Measuring Developers’
Web Security Awareness
from Attack and Defense

Perspectives

IEEE S&P SecWeb Workshop 2022

Merve Sahin, Tolga Unlii, Cédric Hebert,
Lynsay Shepherd, Natalie Coull and Colin McLean

Security
Research

& Abertay
¥ University

Motivation

“Security of web applications stands and falls with their developers.”

Measuring developers’ awareness of web attacks
and available defenses can help to:

— Understand the root causes of security issues
(e.g. Simple access control vulns such as IDOR).

— |dentify the knowledge gaps in security concepts
and see how they can be addressed. [1]

POST /administration/user
HTTP/1.1

{ “Name”: “.",
“companyId”:
}

“" n

— Understand how the available security mechanisms and

framework/browser features can be better utilized. [2]

[1] Roth et al., “12 Angry Developers-A Qualitative Study on Developers’ Struggles with CSP”, CCS’21.
[2] Likaj et al., “Where We Stand (or Fall): An Analysis of CSRF Defenses in Web Frameworks”, RAID’21.

Method

v=—| Questionnaire-based 0 Capture-the-Flag (CTF)
o—| Online Survey D D Challenge
Defenders’ Perspective Attackers’ Perspective
Measuring developers’ awareness of Measuring developers’ awareness of
common security controls, esp. Input attack vectors and to what extent they

Validation (IV), and their ability to detect attempt different vectors to win the CTF
indicators of attacks in a scenario. challenge.

Participant Recruitment

Voluntary/Self-motivated participation with no monetary reward.

O Online Survey O CTF Challenge
Participants: Participants:
‘ | 21 ‘ Y.
Source(s): Source(s):
Social Media (Twitter, Linkedin, Enterprise CTF
Reddit), DEV Community Platform
— 7 Countries (8 UK, 5 DE) — Security Enthusiasts

— Diverse Professions

Participant Recruitment - Limitations

Different Participant Sets

Both experiments have a separate set of
participants, requiring individual analysis of
the results.

Possible Biases
Security enthusiasts may bring bias towards
a higher attack-awareness ratio.

Further Considerations
Participants have different
years/levels of experience.

Development is Teamwork:
Awareness of an individual
developer does not necessarily
correlate to the security level
of the application they develop.

Experiment |: Online Survey

Security Controls and Input Validation (V)
General familiarity (understanding and impl. experience) of common security
controls with focus on IV.

Detecting Attack Attempts - Request Tampering
Understanding of what makes request tampering possible and evaluation through
a scenario-based question.

Participant Demographics

Participants’ job title, years of experience, frameworks they work with and other
information.

Observations from Survey:

Security Controls and Input Validation (1V)

Overall, high familiarity (self-reported)
with the available controls.

Input Validation

Some unfamiliarity with:

— Logging and Monitoring,
— Vulnerability-Specific,
— Authorization

Authentication
Authorization
Vulnerability-Specific

Sensitive Data Protection

Regularly involved in tasks
with 1V (66%).

Security Logging and
Monitoring

IV Focus: Content & Structure (90%).

Client-Side IV:
Considered Optional > Essential (57% > 43%).

T
1
1
1
1
1
1
|
|

20% 10% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%100%
Percentage of Participants

B Unfamiliar Il Familiar

Somewhat familiar

Observations from Survey: Request Modifiability

Participants report which parts
of a HTTP request (1.-5.) can be
modified by the client:

.. POST /settfrigs HTTP/1.1

J..Host: www.app.com
User-Agent: Mozilla/5.0
Content-Type: application/json<.
Content-Length: 114

{ 5.
"Username" : "admin",
"Password" : "1234",

"Email" : "admin@app.com,
"Country" : "United Kingdom"
}

HTTP request body
HTTP header value
HTTP header
HTTP request path
HTTP method

0 10 20 30 40 50 60 70 80 90 100
Percentage of Participants

7 (33%) participants are not aware that all parts of
an HTTP request can be modified.

— Limited IV and awareness of client-side control.
8

Observations from Survey:
Detecting Request Tampering Scenario

Se_-hﬁngs

Username. Lom(min l
Mm?n@qpp.com l

Seleet Qouwi-rt/... vl

Password | sk

E-Mail

Qouwrrl/

UnH'epl lﬁngolom

United States

HT TP Request

Username property is

{
"Username"
"Password"
"Email"
"Country"

}

: "admin",

T "1234n,

: "admin@app.com",
: "United Kingdom"

duplicated

E-mail address syntax is
invalid

Country was not selected

Country does not exist

Q[ieyﬂ'—Side Input Validodrion:
- E-Mail Address Syntox

- Username Min Le_r\yﬂ« &, Max Le)«y\"‘n IE5

- Password Min Length &

- Al inputs are required/cannot be empty

Additional properties
submitted

Password is empty

Username contains the string "
console.log(document.cookie);"

Country property is missing

O
_ I
.
I . .
—— .
] .
75% 50% 25% 0% 25% 50% 75% 100%

Il Not indicative

Not necessarily indicative

Given a scenario (Example HTML form and

HTTP request, set of client-side IV rules),
— Participant asked whether certain events

observed on server-side indicate an attack.

Percentage of Participants

| don't know
[Partially of indicative

Il Definitely indicative

Only 3 (14%) participants reported all events
as definitely/partially indicative of attack.

Experiment Il: The “Give Up” CTF Challenge

You may as well give-up

Push participants to try as many attacks as
possible - Flag unlocked when all attack
vectors are attempted (no exploitation). e

Feedback f ; 3 ‘
CTF Application o .-y
— 7 Endpoints

— 17 Attack vectors [3]
— Attack attempts silently tracked

—, Hints within application “This application has so many

vulnerabilities. Exploit them all,

| GIVE UP: Shows detected attacks and how and you'll be rewarded. But
many are left to unlock the flag. you may as well give up...”.

[3] PortSwigger Web Security Academy - https://portswigger.net/web-security/all-labs

https://portswigger.net/web-security/all-labs

Observations from the CTF

Significantly lower ratio on attacks
that require intercepting the
request, e.g., Cookie and verb
tampering, Client-side bypass,
Content-Type and Host header
attacks.

— Survey: Lower awareness on
tampering possibility of HTTP
method & headers.

Attack vector Until first give-up Total CTF duration

Cross-site scripting (XSS) 55% 77%
Credential guessing 50% 72%
SQL injection (SQLI) 43% 69%
Forced browsing 43% 68%
Cookie tampering 21% 34%
Client-side bypass 19% 39%
HTTP verb tampering 15% 40%
OS command injection 11% 35%
XML external entity injection (XXE) 7% 249%
Content-Type header attack 5% 13%
Path traversal 4% 16%
Deserialization attack 2% 5%
Cross-site request forgery (CSRF) 1% 1%
Null byte injection 1% 7%
Host header attack 1% 4%
Server-side template injection - 10%
Server-side request forgery (SSRF) - 8%

Percentage of participants who tried each attack vector.

11

Observations from the CTF

Deserianzation’ CSRF’ SSRF Attack vector Until first give-up Total CTF duration

Cross-site scripting (XSS) 55% 77%

attacks are attempted by very few Crdential sucesing 50% 72%

SQL injection (SQLI) 43% 69%

— Rather complex attacks, also Forced browsing 43% 68%

. . Cookie tampering 21% 349

HTTP verb tampering 15% 40%

OS command injection 11% 35%

XML external entity injection (XXE) 7% 249%

Dt Content-Type header attack 5% 13%

Overall: Limited awareness on Path traversal 4% 169%

« Deserialization attack 2% 5%

()

attaCkS - 79 A) Of partICIpantS try Cross-site request forgery (CSRF) 1% 1%

" Null byte injection 1% 1%

only ~3 attacks before their first Host header attack 1% 4%

. Server-side template injection - 10%
glve'Up- | Server-side request forgery (SSRF) - 8% |

Percentage of participants who tried each attack vector.

12

Security Documentation of Web Frameworks

Review of framework docs and
available referencing of built-in
security controls.

Focusing on dedicated security
chapters in documentations.

Framework Selection

Survey participants selection

(In line with Stack Overflow Dev
Survey 21°).

Attack vector Security controls
=]
£ s &
< = 2= 3 L0
e 2 8 5 o & . oF
g s B s & 2 g B8o6
] o 9] e = = 137 C .2 e
== «g S S g Z gl B %8E
&s 2 2 = B §s2 8¢a38
S < < > @ nAL »nAa=S
Cross-site scripting (XSS) - - - AnJS,An,B,ED,S
SQL injection (SQL1) = 2 4 D
Credential guessing . - - L,Sy

Deserialization attack - - - -
Cross-site request forgery (CSRF) - - - A,AnJS,An,D,S,Sy
Server-side request forgery (SSRF) - -

A: ASP.NET, AndS: AngularJS, AN: Angular, B: Blazor, D: Django,

E: Express, F: Flask, L: Laravel, S: Spring, Sy: Symfony

— Revolve around vulnerability-specific controls

— Not referenced: Deserialization and SSRF

— Core enabler of web attacks not discussed:
Arbitrary submission of data.

13

Conclusions and Outlook

Lack of awareness that the client can
submit arbitrary input.

— Defenders’ Perspective:

Request tampering not fully understood
— Attackers’ Perspective:

Request tampering less attempted

Awareness on certain attacks (SSRF,
CSRF) is very limited.

How can we make web attacks and
defenses more salient to developers?

Future Directions:

Leveling up developers and their
common resources (e.g., frameworks
and docs) to build with security in mind:

— Incorporate both attack and defense
perspectives within the resources.

— Security controls that are in line with
the developer’s workflow, e.g., through
Secure by default or Autoconfiguration.

14

Thank you!

Backup Slides

Survey Further Details

A.2. Participant Demographics

Country Percentage
United Kingdom 38.10%
" Germany 23.81%
Job title Count United States 19.05%
Developer Canada 4.76%
Senior developer Finland 4.76%
Software Developer / IT-Administration Poland 4.76%
Chile 4.76%

CTO

Director of Front End Development
Machine Learning Engineer

TABLE 4. COUNTRIES THE PARTICIPANTS COME FROM.

Webmaster

1
1
1
1
1
1
1
Full stack software developer 1 Industry Percentage
Software Engineer 1 Information Technology 27.78%
Web Developer 2 Software Development 16.67%
CTI Analyst + R&D 1 Financial and Banking 16.67%
ng:l‘:z:e Developer i Cloud-based Solutions or Services 5.56%
Pythqn Developer 1 stft(s:-x?g gggz
Se"“‘?ty s 1 Media, Publishing Advertising or Entertainment 5.56%
Is\leocnl{cnty Consultant ‘11 Research - Academic or Scientific 5.56%
Web Development and Design 5.56%
TABLE 3. JOB TITLES REPORTED BY THE SURVEY PARTICIPANTS. Energy or Utilities 5.56%

TABLE 5. INDUSTRIES THE PARTICIPANTS WORK IN.

CTF Attack Vectors

OWASP

Attack vector

Attack detection in the CTF challenge

A0l - Broken
Access Control [43]

Forced browsing (direct request)
Path traversal

HTTP verb tampering

Cross-site request forgery (CSRF)

Application receives a request for an invalid endpoint.

URL parameter contains a . . sequence.

Application received a request for a valid endpoint, but with an invalid verb.
Payload received through the /feedback form tries to turn the debug mode to true.

A03 - Injection [44]

SQL injection (SQLIi)
Cross-site scripting (XSS)
OS command injection
Server-side template injection
Null byte injection

Request body or URL parameters contain an unescaped quote.

Request body or URL parameters contain something akin to XSS payload as described in PortSwigger cheatsheet [53].
Request body or URL parameters contain unescaped os-related characters such as: & | ; O0x ~

Request body or URL parameters contain curly brackets.

Request body or URL parameters contain a null-byte.

A0S - Security
misconfiguration [45]

XML external entity injection (XXE)
HTTP host header attack

The uploaded image (SVG file) contains <!Entity.
Request to /restricted endpoint sets the host header to Llocalhost.

A(07 - Identification and
authentication failures [46]

Credential guessing
Cookie tampering

Credentials submitted to the /login form.
Value of the adm cookie is changed from base64(false) to base64(true).

AOB - Software and data
integrity failures [47]

Deserialization attack

Content-Type header attack
Client-side bypass

Value of session cookie, constructed as a serialized Java object with a

content of authenticated=false, was setto authenticated=true.
Content-Type header is modified from its expected value.

The read-only /login POST parameter system is modified from its default value PROD.

Al0 - SSRF [48]

Server-side request forgery (SSRF)

Any request that modifies the sysloc parameter which loads the /login page content via AJAX call.

18

CTF Related Limitations

Participants might:
— Not consider certain attacks as

they did not see an explicit scenario.

— Prefer attacks that are easier or
more obvious.

— Press the give-up button rather
early, thinking they can replay.

Detection rules might result in:

— False Positives: For example,
collisions on injection based attacks
are possible.

— False Negatives: For example, we
might miss certain payloads.

19

CTF Further Details

B.1. List of the hints provided in the CTF chal-
lenge

The home page displayed an SVG picture as a hint to
try an XXE attack.

The /login page was added as a separate page. loading
via an AJAX call. This was done as a hint to try SSRF
and path traversal.

The /restricted endpoint replies 403 - local users only’
to hint an HTTP Host header attack.

The /README route was added as a hint to try SSRF
and Server-side template injection.

The /status and /debug routes were added as a hint to
try CSRE.

The /feedback form was added to enable XSS attack.

404

304

204

10 A

—-10

-20

-30 4

—404

-40 -30 -20 ~-10

B.3. Clustering of participants by attack types

Cluster 0: 27% - Single attack:
SQLi, Cookie Tampering, or
Forced Browsing

Cluster 1: 28% - Avg 3 attacks:
Credential guessing + XSS and
Client-side Bypass

Cluster 2: 21% - Avg 6 attacks:
Large variety

Cluster 3: 23% - Avg 3 attacks:
XSS + SQLi and Forced
Browsing

20

