
Towards Improving the
Deprecation Process of Web Features
through Progressive Web Security

by Tom Van Goethem & Wouter Joosen

Browser features

▸ Browsers are constantly evolving

▸ Tens of new mechanisms are added yearly

▸ Web APIs, CSS features, HTTP header, HTML elements,
JavaScript features, and XML markup (MathML & SVG)

▸ Currently: ~527 browser mechanisms (CanIUse)

▸ Each mechanism has a number of different features

▸ MDN tracks 11,912 features

2

Deprecation Removal

Lifecycle of browser features

3

Initiation Consensus Implementation Adoption

Deprecation and removal

▸ Features in all stages of development may be removed

▸ After initiation/consensus

▸ Fairly easy: no shipped implementation yet

▸ After implementation

▸ Mainly requires an effort from browser vendors

▸ After adoption

▸ Not that trivial…

4

Challenges of feature removal

▸ Many websites might depend on the feature

▸ Removal may cause breakage in websites

▸ Uncoordinated removal: website breaks in browser A, but not
(yet) in browser B

▸ Might drive users to another browser…

▸ Long and painstaking process

▸ Deprecation -> removal might take several years

▸ Security impact: deprecated features can cause vulnerabilities

5

Example: Application Cache

6

“Application Cache is a douchebag”

▸ Several design issues with AppCache

▸ Superseded by programable Cache API

▸ First mechanism to allow offline access

▸ Non-negligible adoption rate

▸ => Took several years to remove from web platform

▸ Was the main cause of several security issues

▸ Leaks cross-origin status code (Lee et al. - NDSS’15)

▸ Determine URL of redirect (Luan Herrara)

▸ User identity, OAuth tokens, …
7

Deprecation, not very effective…

8

Firefox: deprecated Sept 2015
Safari: deprecated Jan 2018
Chrome: deprecated Sept 2018

Chrome & Firefox: removed in Sept 2020

Not just an AppCache problem!

9

Browser Deprecated &
enabled

Deprecated &
removed Total removed

Chrome 1.093 152 234

Firefox 1.036 209 306

Safari 1.191 54 68

Data from Mozilla Developer Network (MDN)

Towards improving security

▸ Synchronized across different browsers

▸ Same timeframe for removal across browsers

▸ Gradual approach: all-at-once would be infeasible

▸ Tailored mechanism: different features require different
approaches for removal

▸ Eventually move towards security-by-default

▸ Easy to implement

11

A proposal: progressive security

▸ System with incremental versions

▸ With every new version: strict security improvements

▸ Browsers have a default/minimal required version

▸ Websites can opt in to a newer version

▸ Communicated via response header

▸ Distinguished between features that may harm other sites vs.
features that may harm site itself

▸ AppCache: leak information about cross-site responses

▸ X-XSS-Protection: enables other sites to leak information
12

It’s all in your header

13

Progressive−Security: version ;
 [unsafe−opt−out=(feature list) ;]
 [unsafe−opt−in=(feature list)]

Versioned mechanism

▸ Each version has list of:

▸ Deprecated features

▸ Unsupported features: disabled by default - allows opt-in

▸ Requires user approval when feature could be abused

▸ Removed features: cannot be re-enabled

▸ Enabled by default features: security mechanisms (can opt out)

▸ Enabled by default without opt out

▸ New versions gradually improve security of the web platform

14

-- version 1 --
deprecated
 + appcache-insecure

-- version 2 --
deprecated
 + appcache

-- version 3 --
removed
 + appcache-insecure

AppCache

-- version 1 --
deprecated
 + document-domain
 + cross-origin-wasm

-- version 2 --
enabled-by-default
 + origin-agent-cluster
unsupported
 + document-domain
 + cross-origin-wasm

-- version 3 --
unsupported
 - document-domain
 - cross-origin-wasm
removed
 + document-domain
 + cross-origin-wasm
enabled-by-default
 - origin-agent-cluster
enabled-by-default-no-opt-out
 + origin-agent-cluster

Origin isolation

-- version 4 --
unsupported
 + appcache

-- version 5 --
unsupported
 - appcache
removed
 + appcache

Conclusion

▸ Many features are introduced to the Web

▸ Difficult to remove features when they start getting used

▸ Currently no synchronization between browser vendors on feature
removal

▸ May delay actual removal

▸ We proposed “progressive security”

▸ Requires synchronization between browsers

▸ Supports current feature removal patterns

▸ Versioned system that gradually improves security
16

Would love to hear
what you think!

Is synchronization between browsers feasible?

Are there alternative/better approaches?

Should we offload decisions to opt-in to dangerous functionality to users?

@tomvangoethem

