Towards Improving the
Deprecation Process of Web Features
through Progressive Web Security

by Tom Van Goethem & Wouter Joosen

Browser features

» Browsers are constantly evolving

» Tens of new mechanisms are added yearly

» Web APIs, CSS features, HTTP header, HTML elements,
JavaScript features, and XML markup (MathML & SVG)

» Currently: ~527 browser mechanisms (CanlUse)
» Each mechanism has a number of different features
» MDN tracks 11,912 features

Lifecycle of browser features

M Implementation Adoption

3

Deprecation and removal

» Features in all stages of development may be removed

» After initiation/consensus

» Fairly easy: no shipped implementation yet

» After implementation

» Mainly requires an effort from browser vendors

» After adoption
» Not that trivial...

Challenges of feature removal

» Many websites might depend on the feature
» Removal may cause breakage in websites

» Uncoordinated removal: website breaks in browser A, but not
(yet) In browser B

» Might drive users to another browser...
» Long and painstaking process
» Deprecation -> removal might take several years

» Security impact: deprecated features can cause vulnerabilities

5

Restricted to secure context — Chrome

Deprecation approved Firefox
— Safari
Intent to remqve in insecure contlext
Restrict AppCache scope
Deprecated on insecure context Intlent to deprecate Removed Origin Trial
Removed by default
@ @ (@ 0,0 0.0 @ 0,0 U @
Deprecated Intent to remove Still supported
Restricted to securg context Removed in all channels
Deprecated Removed in nightly

Intent to remove Iin iInsecure context

Q\f’ 6\5’ 0\/6 0\/6 Q\:\ Q\:\ 0\/1 N A° oY LY Y L O L Lo o O SO ot
207 0T (0T 1% Y (1% 0T 0T 0T a8 a8 1% 0T a8 a8 2% a8 (2% % 2%
P \0 S\’a\x P \0 g\’&‘ ce® \0 @6\3 P \0 @6\3 ce® \0 @6\3 ce® \ S\’o\! P \0 g\?ﬂ

"Application Cache is a douchebag”

» Several design issues with AppCache

» Superseded by programable Cache API

» First mechanism to allow offline access
» Non-negligible adoption rate

» =>Took several years to remove from web platform

» Was the main cause of several security issues
» Leaks cross-origin status code (Lee et al. - NDSS'15)

» Determine URL of redirect (Luan Herrara)
» User identity, OAuth tokens, ...

M N —
o o -
S91]IS JO abejusdiad

Not just an AppCache problem!

Deprecated & Deprecated &

Total removed
enabled removed

Browser

Chrome 1.093 152

Safari 1.191 54 68

Data from Mozilla Developer Network (MDN)

KUMBAYA. LET'S MAKETHE

o

Towards improving security

» Synchronized across different browsers

» Same timeframe for removal across browsers

» Gradual approach: all-at-once would be infeasible

» Taillored mechanism: different features require different
approaches for removal

» Eventually move towards security-by-default

» Easy to implement

11

A proposal: progressive security

» System with incremental versions

» With every new version: strict security improvements

» Browsers have a default/minimal required version
» Websites can opt in to a newer version

» Communicated via response header

» Distinguished between features that may harm other sites vs.
features that may harm site itself

» AppCache: leak Information about cross-site responses

» X-XSS-Protection: enables other sites to leak information
12

It's all in your header

Progressive—Security: version ;
[unsafe—opt—out=(feature list) ;]
[unsafe—opt—in=(feature list)]

13

Versioned mechanism

» Each version has list of:
» Deprecated features

» Unsupported features: disabled by default - allows opt-in

» Requires user approval when feature could be abused

» Removed features: cannot be re-enabled
» Enabled by default features: security mechanisms (can opt out)

» Enabled by default without opt out

» New versions gradually improve security of the web platform

14

AppCache

-- version 1 --
deprecated

-- version 2 --
deprecated

-- version 3 --
removed

-- version 4 --
unsupported

-- version S --

unsupported
- appcache

removed

Origin isolation

-- version 1 --

deprecated

-- version 2 --
enabled-by-default

unsupported

-- version 3 --
unsupported
- document-domain
- Cross-origin-wasm
removed

enabled-by-default
- origin-agent-cluster
enabled-by-default-no-opt-out

Conclusion

» Many features are introduced to the Web
» Difficult to remove features when they start getting used

» Currently no synchronization between browser vendors on feature
removal

» May delay actual removal

» We proposed "progressive security”
» Requires synchronization between browsers
» Supports current feature removal patterns

» Versioned system that gradually improves security
16

% @tomvangoethem

Would love to hear
what you think!

Is synchronization between browsers feasible?
Should we offload decisions to opt-in to dangerous functionality to users?

Are there alternative/better approaches?

