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Abstract—To protect their users from the threats caused by
successful Cross-Site Scripting (XSS) attacks, site operators can
rely on a Content Security Policy (CSP) as a defense-in-depth
mechanism. CSP, when properly deployed, severely limits the
attacker’s capability to execute malicious code, thereby mitigating
the effect of an XSS flaw. However, several studies have shown
that secure CSP adoption lacks in the wild, and a recent study
uncovered the lack of uniform browser support as a major
roadblock for CSP. In this paper, we propose, implement, and
evaluate RETROCSP, a solution which allows developers to
provide consistent levels of protections to their users. Through
a Service Worker, we automatically rewrite the page’s code and
apply retrofitting purely in JavaScript (JS) userland. Our solution
has a small overhead of around 20ms and not only retrofits new
CSP features but also addresses browser-specific bugs. Further,
our findings led to several fixes in major browsers and the CSP
specification itself.

I. INTRODUCTION

The Web is one of the most important application platforms
of our daily lives. We all use it regularly to conduct online
business, stay in touch with friends and family, or to get in
contact with government agencies. One of the core security
policies of the Web is the so-called Same-Origin Policy [9].
It isolates Web content from each other and allows access
if the origin of documents is the same, i.e., they share a
protocol/scheme, the host/hostname, and port. One of the
most dangerous attacks against Web applications is Cross-Site
Scripting (XSS). Here, the attacker abuses a flaw in server-
or client-side code [26] to inject their own code into the
vulnerable application. Hence, this code now runs in the origin
of the flawed application, giving the attacker the ability to
execute arbitrary actions in the name of the user.

To limit the damage that can be caused by such injections,
the W3C has standardized the Content Security Policy (CSP).
This is a server-sent, but client-enforced mechanism (usually
delivered via an HTTP response header), which allows to limit
the sources from which resources are loaded. With respect to
mitigating XSS, this allows the developer of a site to limit
the sources for scripts and disable inline scripts. Hence, while
it does not fix the underlying XSS issue, CSP serves as a
defense-in-depth mechanism that mitigates the problem. If the
policy is well-chosen, it limits the attacker’s ability to inject
arbitrary script code or, in the best case, even ensures that
attackers cannot execute any code at all.

The security which can be provided by CSP is governed
by two aspects: the choice of a secure server-sent CSP and
the proper implementation of the CSP mechanism within

browsers. Prior work has repeatedly shown that the former
step fails in practice [22, 11, 30]. Recently, Roth et al.
[23] conducted an interview study with twelve developers to
understand the roadblocks of CSP. Next to technical road-
blocks, such as being blocked from sane CSPs through third-
party code [27], a repeated theme was the lack of uniform
support of the full CSP standard. These issues ranged from
the well-known problem of lacking support of the ’strict-
dynamic’ source expression to incorrect handling of how
WebSockets are controlled. This means that even if developers
are willing to take all necessary steps to work out a safe CSP,
they are left without the ability to enforce it, as it might break
functionality on some clients.

To ease the burden of having to have non-uniform behavior
in different browsers, in this paper, we propose RETROCSP, a
JavaScript-based solution that addresses inconsistent behavior
in browsers. Therefore, we allow a developer to curate a CSP
for full compliance, and RETROCSP automatically retrofits
the intended functionality and security for browsers without
full support. To that end, we first identify the set of non-
uniformly supported directives and expressions and decide
which can be retrofitted. We then rely on a Service Worker
which automatically rewrites a page’s code to retrofit support
for the mechanisms. In doing so, we also conduct a thorough
analysis of the standard compliance of modern browsers with
respect to CSP. Our findings not only allow us to cover
violations in a safe way, but we also report the issues to
affected vendors. Further, we even detected underspecification
of the CSP standard, which has since been rectified.

To sum up, our paper makes the following contributions:
• Through a thorough set of test cases, we uncover non-

uniform support for several critical CSP features and bugs
in their implementation. Further, our tests highlighted an
underspecified case in the CSP standard.

• We design, implement, and evaluate RETROCSP, a purely
client-side, JavaScript-based, easily-extendable frame-
work for retrofitting CSP features to non-supporting
browsers.

• Our evaluation shows that RETROCSP is not only able
to retrofit lacking features but also to fix bugs in existing
implementations. The overhead in our tests amounted to
just 20ms, making it feasible to deploy in practice.

• To facilitate future work, reproduction of our results, and
allow for immediate roll-out to real-world Web sites, we
make our prototype available [1].



II. BACKGROUND & RELATED WORK

In this section, we introduce the two core technical concepts,
CSP and Service Workers, and surveys related work.

A. Content Security Policy

CSP was originally proposed in Stamm et al. [25] in 2010.
Its initial purpose was to mitigate XSS attacks. To that end, it
features a set of directives that control resource inclusion. For
example, the ability of a page to include images or scripts is
governed by img-src and script-src, respectively. CSP
also features a fallback directive, on which all of the so-called
fetch directives fall back to: default-src. If for any type
of resource there is no explicit directive, default-src is
used instead. Otherwise, the most specific directive is applied.

By default, if a policy contains a script-src (or
default-src fallback), the page cannot rely on inline
scripts, since these are disallowed by default. To re-enable
these, for the initial version of CSP, developers had to add
the ’unsafe-inline’ keyword. However, this also under-
mines any protective capability of the CSP since an attacker
can simply inject an inline script of their choosing. The trouble
this creates in the wild was first documented by Weissbacher
et al. [31], who showed that CSP had little to no adoption in
the wild. To alleviate the issue, CSP level 2 introduced the
concept of hashes and nonces. Here, the developer can use
the CSP to specifically allow scripts by their cryptographic
hash or to attach a number used only once (nonce) to their
policy. Then, the developer can attach the same nonce to
all of their scripts. Under the assumption that the nonce is
random and used exactly once, an attacker cannot guess it, i.e.,
their injected code cannot be executed. Moreover, if nonces
or hashes are present, the ’unsafe-inline’ keyword is
ignored by supporting browsers. This design is to allow CSPs
to be backwards compatible, i.e., a developer might secure
their site with nonces, but leaves ’unsafe-inline’ in the
policy to not break the page for legacy clients. Notably, while
inline scripts can be allowed through nonces or hashes, event
handlers cannot. To ease developers’ burdens, CSP Level 3
specifies the ’unsafe-hashes’ keyword. Combining this
with the hash of an inlined event handler, developers can
enable the usage of inline events. Note that the unsafe part
of the name refers to the fact that an attacker might re-
use any script allowed through its hash for their purposes.
Further, since event handlers are bound to an element, an
attacker may also inject a crafted element to abuse an event
handler that accesses any of the properties of the elements
(e.g., eval(this.name).

While the overall adoption of CSP picked up over the
years [30, 11, 22], the vast majority of policies were still inse-
cure. Across all of these works, 90-95% of observed policies
were trivially insecure. As discussed by Weichselbaum et al.
[30], this in part stems from the nature of the Web: its reliance
on third parties [27, 21, 28]. In particular, if a site includes,
e.g., advertisements, these scripts add additional content from
other sources. Hence, it is not sufficient to allow just the
ad’s domain, but in theory, a developer would need a priori

knowledge about any potential additional sources of scripting
content. In practice, to avoid breakage of the all-important
and revenue-generating ads, sites therefore often need to
allow sources such as https://*. Of course, this again
undermines the security of a CSP, since now the attacker can
inject scripts coming from arbitrary HTTPS URLs. To address
this issue, Weichselbaum et al. [30] proposed an extension
of the script-src directive: ’strict-dynamic’. With
this, any scripts that are explicitly trusted (through a nonce
or hash) can programmatically add additional scripts. These
scripts are also flagged as trusted and can themselves include
additional content. In addition, the presence of ’strict-
dynamic’ means that supporting browsers will disregard
any hosts that are present. This also serves for backward
compatibility, since non-supporting browsers can rely on the
list of allowed sources.

This keyword, along with several other additions such as
the ’unsafe-hashes’ keyword, have since become part of
the CSP Level 3 Living Standard. Given its shifting nature, the
standard is not fully implemented by all browsers. Since much
of the CSP development is driven by Google, Chrome (and its
derivatives) support most features. However, other browsers
lack behind in adoption of the features or implement them
inconsistently with respect to the standard.

In general, while a CSP can protect the page from
including resources from unauthorized sources, it cannot
disable navigation. Hence, while exfiltrating information
through the inclusion of an image pointing to an
attacker’s site is impossible, the attacker can simply
redirect their victim’s browser. That is, the attacker runs
location.href=’//attacker.com/?leak=’ +
data. To stop such data leakage from occurring, CSP Level
3 introduces the navigate-to directive. This is meant to
control where a navigation can occur to (through clicking
links or from JavaScript). Unless the target of a navigation
is in the list, the browser will refuse to navigate away. The
mechanism can be relaxed through the ’unsafe-allow-
redirects’ keyword. This means that the browser will
make the initial request irrespective of its target and only
navigate back if the final destination is not in the allowed
list. However, this implies a number of implementational
challenges; e.g., any headers (such as HSTS) or cookies
which were sent as part of a disallowed redirection chain
must be deleted. Hence, browser support is still lacking
altogether.

B. Service Workers

With the increasing reliance of Web applications for ap-
plications such as Office (e.g., through Google Docs), the
need for offline support rose. To accommodate this need,
browsers nowadays support Service Workers [24]. A Service
Worker is a script that runs on a separate thread in the
browser. They are isolated from the main thread and run
in the background [18]. However, they can react to specific
functional events. Use cases of Service Workers include push
notifications, background sync [8] as well as caching. Most



Feature Chrome Edge Opera Firefox Safari
88.0.4324 88.0.705 74.0.3911 85.0.2 14.0.3

manifest-src ✓ ✓ ✓ ✓ ✗
plugin-types ✓ ✓ ✓ ✗ ✓
script-src-attr ✓ ✓ ✓ ✗ ✗
script-src-elem ✓ ✓ ✓ ✗ ✗
strict-dynamic ✓ ✓ ✓ ✓ ✗
unsafe-hashes ✓ ✓ ✓ ✗ ✗
style-src-attr ✓ ✓ ✓ ✗ ✗
style-src-elem ✓ ✓ ✓ ✗ ✗
navigate-to ✗ ✗ ✗ ✗ ✗
report-to ✓ ✓ ✗ ✗ ✗
prefetch-src ✗ ✗ ✗ ✗ ✗
trusted-types ✓ ✓ ✓ ✗ ✗
worker-src ✓ ✓ ✓ ✓ ✗

TABLE I: Browser compatibility with selected CSP features [15, 14]

importantly, Service Workers can work as a client-side proxy.
By fetching resources, accessing the responses and modifying
them completely, they can effectively overwrite the default
browser behavior.

Service Workers have a separate life-cycle from the
page itself. First of all, a Service Worker has to be
fetched and registered in order to be deployed on a Web
site. This is achieved using the ServiceWorkerCon-
tainer.register() method. If the registration is suc-
cessful, the Service Worker is bound to a scope. Said scope
defines which URLs a Service Worker controls. The scope of
a Service Worker is directly inherited by its own location. A
Service Worker can at most control its own origin.

Whenever a client initiates a request, the Service Worker
can react to the triggered fetch event and handle the request
accordingly. The Service Worker can hijack the request by
installing a fetch event handler. This handler is able to over-
write the default browser behavior by passing a Response
object [36] to the event.respondWith() method. The
manually crafted response will be served to the client instead
of automatically fetching a resource from the server.

At the time of this paper, the ServiceWorker Appli-
cation Programming Interface (API) is supported in at least
Google Chrome, Mozilla Firefox, Opera, Safari, and Microsoft
Edge [7] although it is still an Editor’s Draft [24]. Thus, it can
be used to implement a client-side proxy that runs in parallel
to the main thread in these particular browsers and allows to
rewrite responses for URLs under its control.

III. ASSESSING CSP COMPLIANCE

To first understand the exact nature of potential inconsistent
implementations, we built a comprehensive suite of test cases
based on the CSP standard in the form of HTML pages. Since
the main goal of our work is to provide a framework to retrofit
CSP features to browsers that lack support for those, we chose
features for closer analysis that fulfilled the following three
characteristics at the time of writing:

1) The feature must lack wide-spread browser support.
It makes only sense to retrofit features that are not
supported by all modern browsers (see Table I).

2) In order to only focus on the most relevant directives,
the feature has to have impact on the XSS mitigation

capabilities of CSP, ease the deployment of a non-
trivially bypassable CSP, or must limit the attackers
capability to extract sensitive data in case of a successful
XSS attack.

3) Lastly, it should be possible to implement the feature us-
ing client-side JavaScript, such that can extend browser
functionality without the need to install additional soft-
ware on the client side.

A. Standard Violations

Our analysis indicates that, albeit browser support for CSP
is widespread, there are even inconsistencies in features that
are implemented. During the functionality evaluation, we
encountered several standard violations among all browsers.
In this section, we present each of them and demonstrate what
kind of actions RETROCSP performs to eliminate browser
inconsistencies.

1) Incorrect implementations of ’strict-dynamic’: Accord-
ing to the specification, apart from enabling trust propa-
gation, ’strict-dynamic’ deactivates any scheme and
host source expression as well as the ’self’ keyword.
Notably, this should have effect on scripting content, not
other resources. All chromium-based browsers, however, en-
force this mechanism too harshly if ’strict-dynamic’ is
present in a default-src directive. They deactivate host-
based allowlisting for all resources guarded by default-
src. In particular, this means that merging an img-src
and script-src directive into one functional equivalent
default-src directive is not possible in these browsers.

Google Chrome, Microsoft Edge and Opera prevent loading
the image in Fig. 7 although it is explicitly trusted by the
CSP. We documented and reported [4] the standard violation
to the Chromium Project. The behavior is already fixed and
was shipped with version 89.0.4351.0.

Mozilla Firefox is not affected by this explicit standard
violation; however this due to another standard violation
(Section III-A2). It does not block the image from being
loaded. Safari does also not enforce this policy as intended
due to the missing ’strict-dynamic’ support. However,
a general lack of implementation is not a standard violation
by our definition.

A similar issue exists in Chromium derivatives when the
’strict-dynamic’ keyword is used outside of script-
src-elem, script-src, or default-src. We also re-
ported this incorrect handling of the keyword [5] and it was
fixed along with the previously discussed bug. Note that
Firefox is not affected by the bug, and neither is Safari (for
its general lack of ’strict-dynamic’ support).

2) Lacking support for nonces, hashes, and ’strict-dynamic’
in default-src: Although Firefox is not affected by the previ-
ous two discovered standard violations, it still has its own
flaws. We figured out that the Firefox browser does not
support hashes, nonces or ’strict-dynamic’1 within a

1The console states that it is ignored, but it cannot be used without nonces
and hashes anyways.



default-src directive. Neither CSP Level 2 nor Level 3
are fully enforced in this directive.

In Firefox, neither the first nor the second inline script
of Fig. 8 is executed. The CSP is interpreted and enforced
as default-src ’none’. However, default-src still
works as the fallback mechanism for scripting resources if
script-src is not present. This behaviour is only exhibited
by Firefox, and all others implement hashes and nonces
correctly when used in default-src. This bug was already
reported four years ago, but we have since updated it and
provided additional test cases for validation [2].

3) ’unsafe-hashes’ as default behavior: As noted in Sec-
tion II-A, ’unsafe-hashes’ can be used to allow inline
event handlers by their hash. Notably, Firefox does not support
this directive (yet). However, by default, Firefox enforces CSP
as if ’unsafe-hashes’ was set, i.e., any script allowed
through its hash is allowed to be as an event handler for
any element. CSP specifically excludes hashes as a source for
event handlers. This design choice is made for two reasons:
first, if developers hash their inline event handlers, an attacker
can use these hashed scripts as regular inline scripts, e.g.,
triggering some behavior automatically, which would have
been triggered only on a click event. Second, if an event
handlers uses the element to which it is bound (e.g., evaling
element.data), an attacker can re-use the allowed script
with an element of their own choosing. Hence, defaulting to
this insecure behavior needlessly increases the attack surface
of a potential XSS vulnerability in Firefox. We also reported
this bug to Mozilla [3].

4) Hash value of javascript: URLs: Browsers also behaved
inconsistently when deciding whether a javascript: URL
navigation should be allowed. The chromium-based browsers
required the CSP to contain the hash of the entire URL. On
the other hand, Firefox only allowed code execution if the CSP
contained the hash value of the URL without its scheme.

For example, given the URL javascript:alert(42),
Firefox requires the hash source expression to con-
tain SHA256(’alert(42)’). In contrast, all of the
Chromium-based browsers require the full string, i.e.,
SHA256(’javascript:alert(42)’). The first ap-
proach makes it easy to re-use trusted code for inline scripts
or javascript: navigation as their hash value is identical.
For the second one, this is not the case. However, it has an
advantage from a security point of view. The hash is now
context-aware. Depending on where the code is specified, its
hash value differs.

The CSP standard makes no statement about the correct
hash value computation of javascript: URL, and there
are arguments for both approaches. However, the inconsistent
behavior makes it needlessly harder for developers to build a
functional CSP.

5) Non-Punycode-encoded host source expressions: A CSP
only allows host source expressions to consist of ASCII
characters. According to the specification, any URL containing
non-ASCII characters has to be Punycode-encoded [12]. When
a directive’s source list contains a host source expression with

an internationalized domain that is not Punycode-encoded,
browsers behave inconsistently. To evaluate this, we rely on
test case shown in Fig. 9.

Safari and the three chromium-based browsers warn the
client using a console message that the CSP contains an invalid
character and suggest to percent-encode [10] it. However,
rather than ignoring only the incorrect source expression,
these browsers ignore the entire directive. Hence, the inline
script will open the alert box, even though the script-
src contains no valid entries, i.e., should block any script
execution. Firefox on the other hand, simply ignores the invalid
source expression.

We also reported this browser inconsistency and the false
warning message to the affected browser vendors [6]. Whereas
the warning message has already been adjusted, the underlying
behavior was not changed at the time of this writing.

IV. RETROCSP

In the following, we outline the design of RETROCSP,
explain its core component, i.e., the Organizer, and present
how our retrofitters are implemented.

A. Design

The following section provides an overview of our
retrofitting architecture.

Depending on the retrofitted feature, we need the ability to
block requests while ensuring that we do not falsely block any
request. For this reason, we constructed the architecture on the
client side, to be able to block or change requests before the
browser sends them. Furthermore, the architecture has to be
able to read and modify the Content Security Policy (CSP)
sent by a Web service. While it is no problem to access CSPs
that are set via Hypertext Markup Language (HTML) meta
tags, it is impossible to access the HTTP headers of a response
in the context of a document.

In order to fulfill both requirements, we decided to use a
Service Worker [24] as a base of the retrofitting architecture
because they are able to act as a client-side proxy. Which
can intercept, change, and block requests and responses. Since
Service Workers are supported by all modern browsers [7],
we also ensure that RETROCSP works for the majority of all
clients.

Fig. 1 illustrates the general structure of RETROCSP. The
tool itself consists of an Organizer and multiple retrofitting
modules, called retrofitters. The main Service Worker, as an
organization component, acts as Man-In-The-Middle proxy,
in order to read all incoming CSP headers and enable the
corresponding retrofitters. Each retrofitter itself analyzes the
CSP and performs its associated retrofitting actions on the
response. Those retrofitting actions include:

1) the modification, addition, and deletion of directives and
source-expressions of the received CSP.

2) hooking JavaScript functions and APIs in order to im-
plement/retrofit specific CSP access control checks.

3) reusing universally supported CSP features to simulate
those that are not implemented in all modern browsers.



Fig. 1: General structure of RETROCSP

Fig. 2: Organizer workflow

The retrofitting architecture is configurable, such that
a Website’s operator can activate or deactivate individual
retrofitters. Due to that configurable and module-based archi-
tecture, RETROCSP can be easily extended by adding new
retrofitting modules. Moreover, retrofitters can be removed
from the framework as soon as they are no longer needed, for
example, if the retrofitted feature is supported by all browsers.

B. Organizer

The core logic of the Service Worker is the organization
functionality. It is responsible for handling Hypertext Transfer
Protocol (HTTP) requests initiated by the client, communi-
cating with the server to fetch a requested resource, parsing
a potentially attached CSP and scheduling the corresponding
retrofitters.

The standard workflow of the Organizer can be seen in
Fig. 2. Whenever a client initiates a request, the Service
Worker’s fetch event will fire. As soon as the browser
issues a request, the Service Worker intercepts this request
and simulates the default browser behavior by fetching the
requested resource from the server. If this request succeeds,
the Organizer inspects the Content-Type header of the
response to determine the response body’s media type [17].
A CSP header is only relevant if the requested resource is a
HTML document. Therefore, if the response type is not an
HTML document, the response is directly forwarded to the
client as no retrofitting has to be done for those resources.

Only if the response’s content type is text/html, it is
scanned for a Content Security Policy. First, the organizer
scans the HTML document for CSPs declared via meta ele-

ments and then checks whether the Content-Security-
Policy header is set. If no CSP was specified by the HTTP
response, the unmodified response is passed on.

All found CSPs are merged into one functionally equiv-
alent comma-separated Content Security Policy header. In
order to be equivalent, frame-ancestors, sandbox and
report-uri directives are removed from CSPs declared
by meta elements since they are illegal in such a context.
Besides this, all meta elements defining a CSP are removed
from the HTML document. This introduces one possible minor
functional change. A CSP specified via a meta element does
not apply to elements that are declared above this exact
element within the HTML. By merging the CSPs, this case
cannot be tracked anymore. Apart from this, merging meta
and header CSPs does not alter the functionality nor security
guarantees provided by the CSP.

The composed CSP is strictly parsed according to the stan-
dard [34] by the Organizer. Nevertheless, two modifications
are done during this process. First, if a policy within the CSP
chain does not specify an explicit script-src directive
but declares its fallback, a default-src directive, a new
script-src directive is appended to the corresponding
policy. The source-expressions of the default-src are
then used as expressions for the newly created directive.
Furthermore, if the default-src contains the ’strict-
dynamic’ keyword, it is removed from the default-src
directive’s source list as it is no longer responsible for scripting
content. Notably, this keyword has no semantic meaning for
any other directive apart from script-src. Moreover, this
eases retrofitting CSP features targeting scripting content as
it is no longer required to analyze the potentially clobbered
default-src fallback. As a second modification, the CSP
has to be changed if it does not allow all inline script content.
A CSP allows any inline script content if either none of
its policies specifies a script-src directive (or indirectly
via a default-src) or all directives governing scripting
resources contain the ’unsafe-inline’ keyword. If this is
not the case, the retrofitters need a way to inject authenticated
JavaScript code into the response. For this reason, RETROCSP
generates a cryptographically secure nonce. This retrofitting
nonce is inserted into all such restrictive policies. Thus,
neither functionality nor security is negatively affected by
these modifications.

If we can parse the CSP successfully, the Organizer suc-
cessively initiates the retrofitters. The Organizer holds a list
of all active retrofitting modules. Hence, retrofitting modules
can be easily de-/activated by being removing or appending
entries to this list. As JavaScript is single-threaded, this list
serves as a task queue. The Service Worker takes care of the
retrofitter’s tasks one by one, executing one after the other. If
this retrofitting phase has finished, the organizer component is
in control of the Service Worker again.

The Organizer concludes its work by updating the
Content-Security-Policy header with its modified
value. The retrofitted HTTP response with the updated header
and modified body is delivered to the client. The browser



class Retrofitter {
static retrofit(csp, responseText) {

... // code executed on the proxy side
}

}

Retrofitter.retrofittingScript = function (arguments) {
... // code executed on the client side

};

Fig. 3: Semantic structure of a retrofitter

interprets and enforces the adjusted CSP and response. From a
user’s point of view, this complete process is not distinguish-
able from a normal server response. The Service Worker is a
transparent client-side proxy.

C. Retrofitting

RETROCSP’s retrofitting phase is performed by the
retrofitting modules of the Service Worker. In principle, one
retrofitter is responsible for one CSP feature. This can either be
an entire directive or a source expression of a specific directive.
In this work, we implement three distinct retrofitting modules.

When retrofitting a CSP feature, it is important that this is
done browser-independently. After retrofitting, the feature has
to work correctly for browsers that did not support it as well
as for browsers that correctly implemented it from the very
beginning. Syntactically speaking, retrofitters are JavaScript
classes. The execution logic of retrofitters is separated into two
individual phases. The first phase, the proxy phase, completely
runs on the Service Worker side.

To initiate the proxy-phase, the retrofit method is
called. It implements the proxy-side retrofitting mechanism.
The Organizer passes the CSP and the server response’s body
to the retrofitter. First, the CSP is analyzed. The retrofitter
checks if there is anything to be retrofitted that it is responsible
for. During this phase, the CSP can be modified. If the feature
the current retrofitter governs does not occur in the CSP, it
returns the unmodified response. If the CSP has been changed,
the second phase, the client phase, is initiated. In order to be
able to execute code in the context of the HTML document,
the Service Worker injects JavaScript code into the DOM.
This script is injected as an authenticated inline script, that
carries the retrofitting nonce such that the CSP does not
block its execution. The code that is executed on the client-
side is specified by the retrofitter’s retrofittingScript.
This is an anonymous function implementing any client-
side retrofitting mechanism, e.g., the hooking of a Document
Object Model (DOM) API. To pass proxy-side arguments to
the code executed on the client side, the function is enclosed
by a closure providing any pre-established arguments. This
additionally isolates the retrofitter’s scope from the main
scope of the Web site. The retrofitter can access and modify
the document’s global scope, however, its own variables and
functions cannot be accessed or tampered with from the
outside. The authenticated retrofitting script is appended to
the beginning of the HTML’s head section, such that it is the
first code being executed in the context of the Web site. This
assures that crucial API methods are hooked before they are

Fig. 4: Proxy phase of the StrictDynamicRetrofitter

used for the first time. The retrofitter module is in the client
phase when the retrofitting script is executing on the client-
side. This phase is no longer performed by the Service Worker
but takes place asynchronously on the client-side.

In the following subsections, we describe each of the three
implemented retrofitters in more detail.

1) StrictDynamicRetrofitter: The first retrofitter is the
StrictDynamicRetrofitter. It is responsible for the script-
src directive’s ’strict-dynamic’ source-expression.
This source-expression is one of the core CSP additions
introduced by Level 3 [32]. It is supported by all modern
browsers, except Safari (see Table I). ’strict-dynamic’
allows to propagate trust. This can ease the usage of third-
party code in a Web site, as their trust is automatically
propagated, such that a Web sites operator no longer needs
to rely on host-based allowlists [30].

The challenge of ’strict-dynamic’ resides in the
retrofitting of this trust propagation. Trust, in the context of
the expression, can be achieved via nonces. If a resource can
provide a valid nonce, it passes the CSP and is trusted as
a result. We leverage the fact that an including including
script can pass its own nonce to a newly inserted script
and thereby propagate its trust. The StrictDynamicRetrofitter
creates a cryptographically secure strict-dynamic nonce, sim-
ilar to the retrofitting nonce, during the proxy phase. This
nonce is injected into all policies that contain the ’strict-
dynamic’ keyword. During the retrofitter’s client phase, the
nonce is utilized to simulate the trust propagation.

The establishment of the strict-dynamic nonce represents
almost the entire proxy phase of the StrictDynamicRetrofitter.
The workflow of the StrictDynamicRetrofitter’s proxy phase
can be seen in Fig. 4. The retrofitter analyzes all policies within
the CSP. It generates and adds the strict-dynamic nonce to
all of those that include the ’strict-dynamic’ source
expression in a script-src directive. In addition to that,
it removes all host source expressions in the source list of
such directives as ’strict-dynamic’ disables host-based
allowlisting for script resources. If it did not find any policy
containing the keyword, no strict-dynamic nonce is generated,
and no client-side retrofitting script is injected into the HTTP
response’s body. As such, this retrofitter only has a client phase
if a strict-dynamic nonce was generated.

During its client phase, the StrictDynamicRetrofitter imple-
ments the trust propagation mechanism. When trying to dy-
namically include script elements in a non-parser-inserted
way, the element itself must be created first. This is the case
for all available API methods that allow the addition of new
elements to the DOM, such as Node.insertBefore(),



Node.appendChild(), ParentNode.append() and
ParentNode.prepend(). Therefore, it suffices to hook
those APIs that enable to programmatically create an
HTML element, namely Document.createElement()
and Document.createElementNS().

Both functions are hooked in the same way. First, the
original unmodified API method is called, by the hook. Then,
before returning the resulting element, the strict-dynamic
nonce that was generated during the proxy phase is added
to the element. The hooking of these functions ensures that
all programmatically created elements are authenticated. This
furthermore does not tamper with the security as an attacker
can only abuse these modified API methods if they are able
to execute code in the Web site’s origin in the first place.

2) UnsafeHashesRetrofitter: The second retrofitter is the
UnsafeHashesRetrofitter. It takes care of the ’unsafe-
hashes’ source-expression. Similar to the previous
retrofitter, this one is also part of the script-src directive.
The ’unsafe-hashes’ source-expression is also one of
the major changes introduced by CSP Level 3 [32], such that
developers can now not only allow the executions of inline
scripts via hashes, but can now also use hashes to allow
inline JavaScript events added to DOM elements.

The proxy phase of the UnsafeHashesRetrofitter consists of
two steps. First, it collects all hash values that are allowed to
be used for inline event handlers via the ’unsafe-hashes’
source expression. If the CSP allows all inline script content
via ’unsafe-inline’, the client phase is skipped since
there is nothing to be retrofitted.

Because some browsers, for example Firefox, have the
unsafe-hashes behavior as default, the UnsafeHashesRetrofitter
injects a retrofittingScript even if no ’unsafe-
hashes’ source expression is present in the CSP. As a
consequence, the retrofitter changes to the client phase if
it encounters any hash source-expression during the scan of
the CSP, such that also the wrong default behavior is fixed
by the retrofitter. For example, the absence of ’unsafe-
hashes’ dictates that hash sources are not valid for in-
line event handlers or javascript: navigation, which
must be blocked as a consequence. In addition to that, the
retrofitter scans all policies for a form-action directive,
or its fallback navigate-to, that does not contain a
javascript: scheme source expression. Code execution
through javascript: URLs within form elements has to
pass the script-src directive and form-action check.
Thus, we have to keep track of whether such a restrictive
form-action directive that does not allow code execution
is present. The presence of such a restrictive form-action
directive, as well as the list of allowed hashes, are provided to
the retrofitting script that the UnsafeHashesRetrofitter injects
to the DOM of the Web site.

During the retrofitter’s client phase, it has to retrofit inline
event handler and javascript: URL control checks. For
most of its work, it uses a Mutation Observer [35]. This
Mutation Observer enables the retrofitter to react during the
HTML parsing process and, most importantly, before crucial

function defineGlobalFunction(code) {
let functionDefinition = document.createElement('script');
let functionName = `globalFunction${functionID++}`;
functionDefinition.innerText = `function
${functionName}(event){${code}}`;↪→

functionDefinition.nonce = retrofittingNonce;
document.head.prepend(functionDefinition);
return window[functionName];

}

Fig. 5: Transforming text content into executable code

load events trigger. This allows the UnsafeHashesRetrofitter
to block inline event handlers before they execute. At the same
time, it can retrofit the functionality of inline event handlers
or javascript: navigation that the browser would block
due to missing support of the ’unsafe-hashes’ keyword
source expression. Whenever a new element is modified or
added to the DOM, the Mutation Observer is triggered and
can check whether the element has to be retrofitted before it
is actually added to the DOM.

This comes with two major challenges. First, as ’unsafe-
hashes’ is completely based on hashes, the retrofitter has
to be able to compute the CSP hash value of JavaScript code.
Secondly, this has to be done synchronously, such that an
asynchronous event does not trigger before the element is
fully retrofitted. Since JavaScript in the browser only provides
an asynchronous cryptography API [29] due to performance
reasons, we had to switch to a synchronous third-party JS
library. We decided to use Jeff Mott’s CryptoJS [20], as it
provides all necessary hashing algorithms, namely SHA256,
SHA384, and SHA512.

When retrofitting an element’s inline event handler or
javascript: URL attribute, we first check if the under-
lying code is allowed by one of the hashes collected during
the proxy phase. If none of the three hashing algorithms
supported by CSP yields a valid (algorithm, hash) pair, the
code is untrusted. Untrusted code execution must be prevented,
e.g., by using the Event.preventDefault() method that
prevents an inline event handler from executing and does not
interfere with event handlers that are added programmatically.
However, if any (algorithm, hash) pair is valid, the code is
trusted and can be executed. For this to work, the attribute’s
value has to be converted from a string into executable code.
Transforming text content into code can be dangerous, because
this can lead to a trivial code injection vulnerabilities if the text
contains any user-controllable input. Unless the ’unsafe-
eval’ keyword is set, a CSP prevents the usage of eval()
and similar functions as long as a script content controlling
directive is specified. As we did not want to depend on this
security eroding keyword, we had to implement a way to
securely transform text into executable code.

We use the exact same functionality as the StrictDynami-
cRetrofitter. Fig. 5 shows the gadget we implemented within
the retrofitting script. It transforms text content into code
by creating a new authenticated inline script element using
RETROCSP’s retrofitting nonce. The script defines the code as
a function in the document’s global scope such that it can be



accessed from within the retrofitter’s scope. This newly created
script element is prepended to the HTML head such that
it is executed immediately.

The function in Fig. 5 simply returns a handle to the
newly defined global function that can be used to retrofit
the event handler or javascript: URL attribute. This
can be done by specifying a corresponding event handler
programmatically. The code-generating gadget itself does not
provide an additional security risk as the retrofitting script is
isolated in its closure. Thus, it is not callable from the outside.

In addition to the Mutation Observer, the UnsafeHashes-
Retrofitter also hooks the window.open() method, because
it can be used to execute code via a javascript: URL.
Hence, the exact same hash value computations and CSP
checks are performed here. Only if the code provided by
the URL is trusted through a valid (algorithm, hash) pair,
the window.open() call is executed. Otherwise, win-
dow.open behaves as if it was is provided with an invalid
URL and code execution is prevented.

3) NavigateToRetrofitter: The navigate-to directive is
a completely new directive added in CSP Level 3. As such, it
introduces a completely new way to control navigation events,
in order to prevent unintended data leakage by restricting
what navigations the document may initiate. At the time of
this writing, the directive is not supported by any modern
browser [14, 15]. As a consequence, we created the Navi-
gateToRetrofitter as a third retrofitting module of RETROCSP.

The NavigateToRetrofitter begins its proxy phase by collect-
ing the set of sources allowed by a navigate-to directive.
In order to control navigation events issued by HTML forms,
if a navigate-to directive is present within a policy,
but no form-action directive is set, the module already
starts to retrofit on the proxy side. Therefore, a new form-
action directive is added to the policy that inherits all
sources of its fallback. Since the form-action directive is
fully supported by all modern browsers [15, 14], this already
correctly implements the form-based navigation checks by
transferring this task to another directive.

The retrofitter also prepares the HTML document to be
retrofitted during the client phase by modifying meta ele-
ments that initiate navigation, so-called meta refreshes.

This kind of navigation redirects the client to a specified
target after a certain period of time. To prevent prohibited
navigations, the NavigateToRetrofitter has to modify the el-
ement’s attributes. Because a navigation initiated by a meta
refresh can not be canceled if it is scheduled, the content
attribute’s name is replaced with refresh-target. This
hinders the navigation as the browser no longer understands
the attribute. The retrofitter, however, can process this attribute
of the meta tag during the client phase.

Because javascript: URLs can be used for code execu-
tion wherever standard navigation are initiated, the client phase
of the NavigateToRetrofitter is almost equivalent to the one
of the UnsafeHashesRetrofitter. Notably, we did not consider
javascript: navigation as navigation that is governed by
the navigate-to directive for several reasons. First of all,

Browser strict-dynamic unsafe-hashes navigate-to
Chrome ✓ ✓ ✗
+ RETROCSP ✓ ✓ ✓
Edge ✓ ✓ ✗
+ RETROCSP ✓ ✓ ✓
Opera ✓ ✓ ✗
+ RETROCSP ✓ ✓ ✓
Firefox (✓) (✗) ✗
+ RETROCSP ✓ ✓ ✓
Safari ✗ ✗ ✗
+ RETROCSP ✓ ✓ ✓

TABLE II: Functionality overview of RETROCSP per browser

those URLs are merely a way to execute inline code whereas
navigate-to controls navigations. The script-src di-
rective is already responsible for this, and code execution
itself does not count as a navigation event. The CSP Level
3 specification [32] also does not state that the navigate-
to directive would be responsible for this kind of code
execution. As such, code execution could only be allowed
by adding a javascript: scheme source expression to
the navigate-to directive, this would further not really
improve the security in any way. It would only be possi-
ble to allow all, or no javascript: navigation via the
navigate-to directive. In addition to the reasons presented
so far, other directives like the frame-src directive are not
triggered if a resource they are governing is specified using a
javascript: URL.

As before, the retrofitter hooks the window.open()
method and registers a Mutation Observer that reacts to all
modified or injected elements. If these elements fall under
the scope of the navigate-to directive, the access control
checks specified by the CSP standard are performed. We
strictly implemented the algorithm defined by the standard [33]
to check whether a URL is a valid navigation target. Naviga-
tion initiated by the document is only allowed if the target
matches a valid source declared by the CSP.

V. EVALUATION

Here, we evaluate RETROCSP with respect to retrofitted
functionality and its performance.

A. Functionality

Here, we discuss the individual retrofitted functionality in
more detail (see Table II for an overview).

1) strict-dynamic: All chromium-based (Google Chrome,
Microsoft Edge and Opera) browsers completely support the
’strict-dynamic’ source expression out of the box.
They successfully passed all of the test cases. RETROCSP
does not need to tamper with the browsers’ functionality.
Even when we deploy RETROCSP, our tests indicate that
’strict-dynamic’ still works as intended and we did not
detect any other defects.

Mozilla Firefox does not fully implement ’strict-
dynamic’. It behaves correctly if the keyword is part of
a script-src directive’s source list. However, the source
expression is not supported when present in a default-src
directive. In this case, it is ignored. The retrofitting architecture



does not interfere with the browser’s correct script-src
behavior but fixes the missing support for the default-src
directive. Thus, with RETROCSP, Mozilla Firefox adheres to
the standard and passes all examined test cases.

As stated by MDN Web Docs [15] and Can I Use [14],
Safari is not compatible with ’strict-dynamic’. We
were able to verify this finding at the time of our experiments.
Note that Webkit has since adopted a patch to support strict-
dynamic, but the current version of Safari at the time of this
writing (15.1) does not yet support it. Safari simply ignores
the source expression and enforces the CSP as if the keyword
was not specified. As such, scripting resources only allowed
by their host are not blocked but loaded since host-based
allowlists are still valid. Moreover, scripts cannot indirectly
propagate their trust to non-parser-inserted scripts. RETROCSP
completely re-implements support for ’strict-dynamic’.
Our tests show that using RETROCSP, ’strict-dynamic’
is correctly enforced in the Safari browser.

2) unsafe-hashes: Just as for the previous source expres-
sion, all chromium-based browsers implement the ’unsafe-
hashes’ keyword correctly. With and without RETROCSP,
these browsers passed all test cases.

According to MDN Web Docs [15] and Can I Use [14],
the Firefox browser does not support ’unsafe-hashes’.
As a result of the evaluation, we conclude that this is only
partially true. In fact, it is the other way around. Firefox
enforces ’unsafe-hashes’ even when it is not indicated
by the CSP. For this reason, RETROCSP has to invoke the
UnsafeHashesRetrofitter even when said source expression
cannot be found in the CSP. The retrofitting architecture fixes
this behavior accordingly and when deployed in Firefox, the
browser now correctly implements ’unsafe-hashes’ as
specified by the CSP standard [32].

Again, Safari does not support this keyword source expres-
sion at all. Instead, it is ignored and the browser suggests
setting the ’unsafe-inline’ keyword.

RETROCSP enables the basic usage of ’unsafe-
hashes’ but fails to pass one test case. The win-
dow.location object can be used to execute code by
navigating the client to a javascript: URL. This code
execution cannot be governed by RETROCSP. Due to security
reasons, it is not possible to modify and hook the win-
dow.location object as it is non-configurable. Thus, even
when RETROCSP is deployed on a Web site, Safari is still
overblocking for this kind of code execution and would require
the ’unsafe-inline’ source expression. For Firefox, it is
the other way around. RETROCSP cannot block such code
execution if the CSP contains a valid (algorithm, hash) pair
but no ’unsafe-hashes’ source expression. The code
execution performed by Firefox cannot be undone.

3) navigate-to: The navigate-to directive could be ver-
ified to be unsupported by any modern browser. All browsers
allowed all initiated navigations, regardless of the CSP.

The retrofitting architecture universally implements the
navigate-to directive for all of these browsers. It enables
developers to use this new directive without adverse effects,

although one test case could not be passed successfully due to
the window.location object. As it is non-configurable, the
directive’s navigation checks could not be integrated into this
object. Hence, we cannot guarantee unlimited browser support
for this directive.

a) Summary: All in all, we were able to verify the
information shown in Table I by manually testing each targeted
browser’s default behavior. However, the precise extent of CSP
support fluctuated for the Mozilla Firefox browser in particular.
Table II provides an overview of the status of each targeted
browser and the retrofitting architecture. When deployed on a
Web site, RETROCSP ensures that browsers correctly enforce
the retrofitted CSP features. Moreover, it does not tamper with
the functionality of browsers that already correctly implement
these source expressions and the directive. Nonetheless, nav-
igations initiated by using window.location cannot be
verified nor blocked by RETROCSP.

B. Performance

To measure the performance of RETROCSP, we measured
both the loading time overhead and the runtime overhead of
it. In this section, we present an overview of the results. Due
to space restrictions, we do not discuss the exact details of
our performance analysis here. We instead refer the reader to
Appendix A in the Appendix.

To evaluate the overhead in loading time and the added
checks of RETROCSP, we first create five different CSPs
aimed at triggering different retrofitters (shown in Fig. 6). This
includes a CSP to trigger the three retrofitters individually
(CSP 1–3), an empty CSP as a baseline (CSP 4), and a
combination which triggers all retrofitters at the same time. We
then measured the overhead in two dimensions: delay in load
time of the page itself for each of the CSPs and specifically
the execution overhead for each retrofitter.

To account for potential outliers and ensure meaningful data
collection, we ran each test 1,000 times. Since the loading time
is increased through the synchronous hash computation and
comparisons, we expect certain delays. Overall, the loading
time overhead is at most 23ms. This occurs for CSP 5, which
triggers all retrofitters at the same time. In addition to the
overall overhead, we also consider the per-retrofitter overhead.
To that end, we micro-benchmark the execution overhead
incurred by each retrofitter separately. For a baseline, we first
run a vanilla version of RETROCSP, which has all retrofitters
disabled. For this, we measure a load time of 20-21ms; any
load time beyond that is then the overhead of the retrofitters.
When activating all retrofitters, we find an overhead of 21-
23ms in the execution of the retrofitters. However, by in-
dividually testing the overhead of each retrofitter, the delay
primarily originates from the ’unsafe-hashes’ retrofitter.
This scales linearly with the number of hashes to be compared,
since each script needs to be hashed in a synchronous fashion.
Considering that Web sites in practice do not make extensive
use of hashes [22], we do not expect that site operators add a
significant number of these, implying that the overall overhead
remains low.



# CSP 1
Content-Security-Policy: script-src 'self' 'nonce-NjUxNTEzNTYzMjgzMzI0NA==' 'strict-dynamic'; worker-src 'self'
# CSP 2
Content-Security-Policy: script-src 'self' 'nonce-NjUxNTEzNTYzMjgzMzI0NA=='

'sha256-RCMdviIzxShMQNOs7R/Pq3EjJM6L0MxdBYyGSEbHucQ=' 'sha256-AOnA0C6HptNjWEo+4mP1/LTfE1YA+7+gilj9qlv+fMQ='
'sha256-o1p1KBgob2gsq9r4DxsE82JZ02L71JMECff4xWMwZWY=' 'sha256-BVKPTh0klRSsJxt1gZGDRddHVlcb7xX0ZWk4UJi7uLA='
'sha256-62p6MzdLMN+pbb/Do7BxJiBN/vUcxNAsTuns/guIqew=' 'unsafe-hashes'

↪→
↪→
↪→
# CSP 3
Content-Security-Policy: navigate-to 'self'
# CSP 4
Content-Security-Policy:
# CSP 5
Content-Security-Policy: script-src 'self' 'nonce-NjUxNTEzNTYzMjgzMzI0NA==' 'strict-dynamic'

'sha256-RCMdviIzxShMQNOs7R/Pq3EjJM6L0MxdBYyGSEbHucQ=' 'sha256-AOnA0C6HptNjWEo+4mP1/LTfE1YA+7+gilj9qlv+fMQ='
'sha256-o1p1KBgob2gsq9r4DxsE82JZ02L71JMECff4xWMwZWY=' 'sha256-BVKPTh0klRSsJxt1gZGDRddHVlcb7xX0ZWk4UJi7uLA='
'sha256-62p6MzdLMN+pbb/Do7BxJiBN/vUcxNAsTuns/guIqew=' 'unsafe-hashes'; navigate-to 'self'; worker-src 'self'

↪→
↪→
↪→

Fig. 6: Content-Security-Policy Headers Used in Evaluation

At first glance, the overhead of RETROCSP looks extremely
high; we seemingly add 23ms overhead to a 20ms load time,
implying more than 100% overhead. This, however, is in
fact not correct. Rather, the overhead is exaggerated by our
use of localhost as a Web server. In practice, the execution
overhead does not depend on the network connection, but
the computation only occurs in the Service Worker, i.e., it
is unaffected by the time it takes to load a page. In contrast,
an average Web page takes 10.3s to load [13]. In light of this,
an overhead of 23ms actually implies that the overhead in
practical deployment is merely 0.2% and hence negligible.

VI. DISCUSSION

RETROCSP achieves to retrofit security on the Web. We
have shown that the chosen CSP features could be successfully
re-implemented; yet RETROCSP has its limitations.

First, our evaluation and implementation only focus on
desktop browsers. We leave an adoption of RETROCSP to
future work. In addition, RETROCSP requires Service Work-
ers to function. This requires that the browser support this
technology. More importantly, though, Service Workers can
only operate on secure origins, i.e., require a valid TLS
connection. However, in the age of automated tools such as
Let’s Encrypt [19], this appears feasible.

In order to deploy RETROCSP successfully, developers have
to host the underlying Service Worker themselves. This is due
to the fact that Service Workers have to be of the same origin
as the scope they are controlling. Furthermore, developers have
to serve the Service Worker at the root directory of the Web
site or alternatively attach a Service-Worker-Allowed
header to the corresponding HTTP response. Since developers
want to use the retrofitting architecture when trying to deploy
it, this should not be an obstacle. The Service Worker itself is
a light-weight JavaScript file, consisting of 781 source lines
of code that sum up to only 46 KB of data.

As RETROCSP is code that is executed, it has to be trusted
by the CSP itself. Thus, developers have to explicitly trust the
Service Worker by adjusting the CSP. However, CSP provides
a directive for this purpose, the worker-src directive.
Adding a worker-src ’self’ or declaring the explicit
URL of the Service Worker suffices to update the CSP to
trust the architecture. The directive itself is supported by all

browsers apart from Safari [16, 14]. Manual testing revealed
that Safari trusts all Service Workers automatically. As such,
no extra configuration has to be done to support Safari users.

During the implementation of the UnsafeHashesRetrofitter
and NavigateToRetrofitter, we recognized that the win-
dow.location object cannot be retrofitted with access
control checks due to its non-configurability. Here, security
considerations hindered us from integrating further security
mechanisms into the window.location object by hooking
it. As a result, it was not possible to govern javascript:
URL navigation performed by modifying the object’s href
attribute. Moreover, it was also not feasible to integrate the
navigation checks defined by the navigate-to directive.

The navigate-to directive also provides a unique source
expression only valid for this directive. The ’unsafe-
allow-redirects’ keyword source expression allows
navigations initiated by the document to be trusted if the
navigation resolved to a trusted endpoint after an arbitrary
amount of redirects. With this configuration, navigate-to
implicitly trusts all redirections. However, since our solution is
JavaScript-based and intercepts redirections before they occur,
it is infeasible for RETROCSP to implement the directive.

Nevertheless, RETROCSP is able to address some of the
most pressing issues in lacking browser support for CSP.
With RETROCSP, developers are able to deploy policies
that do not require hacks to allow for compatibility, which
sacrifices security. For immediate use by site operators and
for reproducibility, we release our prototype implementation
of RETROCSP publicly [1].

VII. CONCLUSION

Developers aiming to deploy a CSP are often hindered by
the lack of universal support of all CSP directives. Moreover,
even if browsers seemingly implement the latest specifica-
tion, their implementations have inconsistencies. In this pa-
per, we designed, implemented, and evaluated RETROCSP, a
retrofitting utility to bring improved CSP support to browsers.
It comes with a low overhead and not only retrofits function-
ality but also fixes implementational bugs in major browsers.
Beyond this, our work and thorough set of tests allowed us to
find and report multiple bugs both in implementations as well
as the CSP specification.



REFERENCES

[1] Anonymous. retroCSP implementation. https://
anonymous.4open.science/r/retroCSP.

[2] Anonymous. Anonymized for Submisison, October 2016.
(accessed on 31/03/2022).

[3] Anonymous. Anonymized for Submisison, December
2020. (accessed on 31/03/2022).

[4] Anonymous. Anonymized for Submisison, January 2021.
(accessed on 31/03/2022).

[5] Anonymous. Anonymized for Submisison, January 2021.
(accessed on 31/03/2022).

[6] Anonymous. Anonymized for Submisison, January 2021.
(accessed on 31/03/2022).

[7] Jake Archibald. Is ServiceWorker ready? https://
jakearchibald.github.io/isserviceworkerready/. (accessed
on 31/03/2022).

[8] Jake Archibald. Introducing Background Sync.
https://developers.google.com/web/updates/2015/12/
background-sync, September 2017. (accessed on
31/03/2022).

[9] A. Barth. The Web Origin Concept. RFC 6454 (Proposed
Standard), December 2011. ISSN 2070-1721. URL https:
//www.rfc-editor.org/rfc/rfc6454.txt.

[10] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform
Resource Identifier (URI): Generic Syntax. RFC 3986
(Internet Standard), January 2005. ISSN 2070-1721.
URL https://www.rfc-editor.org/rfc/rfc3986.txt. Updated
by RFCs 6874, 7320.

[11] Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi.
Content security problems?: Evaluating the effectiveness
of content security policy in the wild. In CCS, 2016.

[12] A. Costello. Punycode: A Bootstring encoding of Uni-
code for Internationalized Domain Names in Applica-
tions (IDNA). RFC 3492 (Proposed Standard), March
2003. ISSN 2070-1721. URL https://www.rfc-editor.org/
rfc/rfc3492.txt. Updated by RFC 5891.

[13] Brian Dean. We Analyzed 5.2 Million Webpages.
Here’s What We Learned About PageSpeed. https:
//backlinko.com/page-speed-stats, October 2019. (ac-
cessed on 31/03/2022).

[14] Alexis Deveria. Can I use... - Content Security Pol-
icy. https://caniuse.com/?search=Content%20Security%
20Policy, 2021.

[15] Mozilla Foundation. Content Security Policy - Browser
compatibility. https://developer.mozilla.org/en-US/docs/
Web/HTTP/CSP, 2021.

[16] Mozilla Foundation. MDN Web Docs - CSP: worker-src.
https://developer.mozilla.org/en-US/docs/Web/HTTP/
Headers/Content-Security-Policy/worker-src, February
2021. (accessed on 31/03/2022).

[17] N. Freed and N. Borenstein. Multipurpose Internet
Mail Extensions (MIME) Part One: Format of Internet
Message Bodies. RFC 2045 (Draft Standard), November
1996. ISSN 2070-1721. URL https://www.rfc-editor.
org/rfc/rfc2045.txt. Updated by RFCs 2184, 2231, 5335,

6532.
[18] Matt Gaunt. Service Workers: an Introduction.

https://developers.google.com/web/fundamentals/
primers/service-workers, September 2021. (accessed on
31/03/2022).

[19] Internet Security Research Group (ISRG). Let’s Encrypt.
https://letsencrypt.org/. (accessed on 31/03/2022).

[20] Jeff Mott. CryptoJS - JavaScript implementations of stan-
dard and secure cryptographic algorithms. https://code.
google.com/archive/p/crypto-js/. (accessed 31/03/2022).

[21] Nick Nikiforakis, Luca Invernizzi, Alexandros Kaprav-
elos, Steven Van Acker, Wouter Joosen, Christopher
Kruegel, Frank Piessens, and Giovanni Vigna. You
are what you include: large-scale evaluation of remote
javascript inclusions. In Proceedings of the 2012 ACM
conference on Computer and communications security,
pages 736–747, 2012.

[22] Sebastian Roth, Timothy Barron, Stefano Calzavara, Nick
Nikiforakis, and Ben Stock. Complex security policy? a
longitudinal analysis of deployed content security poli-
cies. In NDSS, 2020.
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<!DOCTYPE html>
<html lang="en">
<head>

<meta http-equiv="Content-Security-Policy"
content="default-src
https://upload.wikimedia.org/wikipedia/en/9/95/
Test_image.jpg 'strict-dynamic'">

↪→
↪→
↪→

</head>
<body>
<img src="https://upload.wikimedia.org/wikipedia/en/9/95/

Test_image.jpg">↪→
</body>
</html>

Fig. 7: Standard Compliance Test Case #1

<!DOCTYPE html>
<html lang="en">
<head>

<meta http-equiv="Content-Security-Policy"
content="default-src 'nonce-ABCDEF'
'sha256-sOq4p3/IUmdg10+FT4za4DO2/MDyaP9Aw+TRyl1Y09A='">

↪→
↪→

</head>
<body>
<script nonce="ABCDEF">alert(1337)</script>
<script>alert(42)</script>
</body>
</html>

Fig. 8: Standard Compliance Test Case #2
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APPENDIX

1) Loading time overhead: To measure the load overhead
of the entire architecture, we computed the total loading
time of the page shown in Fig. 10 in the Appendix. This
represents a merged and simplified version of the test cases

<!DOCTYPE html>
<html lang="en">
<head>

<meta charset="UTF-8">
<meta http-equiv="Content-Security-Policy"

content="script-src https://kündigungsschutz.com/">↪→
</head>
<body>
<script>alert(42)</script>
</body>
</html>

Fig. 9: Standard Compliance Test Case #3

<!DOCTYPE html>
<html lang="en">
<head>

<meta charset="UTF-8">
<title>Evaluation</title>

</head>
<body>
<!-- 'strict-dynamic' features -->
<script nonce="NjUxNTEzNTYzMjgzMzI0NA==">

console.log("[SD] nonced inline script (uses
document.write)");↪→
document.write("<scr" + "ipt>console.log('[SD] parser
inserted script')</scr" + "ipt>");↪→

</script>

<script nonce="NjUxNTEzNTYzMjgzMzI0NA==">
console.log("[SD] nonced inline script (uses
document.body.appendChild)");↪→
let scriptElement1 = document.createElement("script");
scriptElement1.text = "console.log('[SD] non-parser
inserted inline script')";↪→
document.body.appendChild(scriptElement1);

</script>

<!-- 'unsafe-hashes' features -->
<img src="" onerror="console.log('[UH] should be blocked

(inline event handler)')">↪→
<img src="" onerror="console.log('[UH] inline event

handler')">↪→

<img id="img" src="">
<script nonce="NjUxNTEzNTYzMjgzMzI0NA==">

document.getElementById("img").setAttribute("onerror",
"console.log('[UH] attribute change')")↪→

</script>

<iframe src="javascript:console.log('[UH] iframe JS
URL')"></iframe>↪→

<a href="javascript:console.log('[UH] hashed JS URL with
protocol')">with protocol</a>↪→

<a href="javascript:console.log('[UH] hashed JS URL without
protocol')" onclick="console.log('[UH]
onclick')">without

↪→
↪→

protocol</a>
<a href="javascript:console.log('[UH] should be blocked

(a-tag href)')" onclick="console.log('[UH]
onclick')">not

↪→
↪→

hashed</a>

<!-- navigate-to features -->
<a

href="http://localhost:8000/navigate-to/">localhost/navigate-to</a>↪→
<a href="http://not-localhost:8000/">not-localhost</a>

<form
action="http://localhost:8000/navigate-to/#from-action"
method="post">

↪→
↪→

<input type="text" name="fieldName" value="fieldValue">
<input type="submit" value="submit">

</form>

<form action="http://not-localhost:8000/#form-action"
method="post">↪→
<input type="text" name="fieldName" value="fieldValue">
<input type="submit" value="submit">

</form>
</body>
</html>

Fig. 10: HTML document used for performance evaluation

used for our functionality evaluation. In addition to that, we
deactivated caching for all evaluated browsers to not distort
the measurements. To ensure that all client-side retrofitting
has finished, we wait until the onload is fired.

We begin the evaluation by analyzing the impact of the CSP
structure on the performance of RETROCSP. For this purpose,
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Fig. 11: Google Chrome: Loading time of evaluation Web site per
CSP, showing time in milliseconds

we created five different CSPs, each of which triggering each,
none or all retrofitters (see Fig. 6). To collect meaningful
data about the loading time, we repeated the experiment 1,000
times in the browser.

Fig. 11 shows the results of the repeated loading time
measurements of the evaluation Web site for each of the
five constructed CSPs. The Web site’s loading time was the
shortest when configured with a CSP only triggering the
UnsafeHashesRetrofitter. In this case, the average loading time
ranged between 17 and 19ms. This is quite surprising if
comparing this with the results of the empty CSP. On average,
these measurements were about 2ms higher. However, since an
empty CSP does not restrict any code execution, more code is
executed before the page has finished loading, hence delaying
the load time.

Considering the second CSP, we can see that it has a
noticeable effect on the Web site’s loading time. Although this
CSP is restricting code execution in comparison to the empty
CSP, it makes the Web site take about 20ms longer to load. No-
tably, the second CSP contains many hash source expressions,
which are used in combination with the ’unsafe-hashes’
keyword source expression. This causes higher work load for
the UnsafeHashesRetrofitter because each inline event handler
has to be compared with each valid hash in the CSP, causing
synchronous hash computations.

In contrast to that, the third CSP, targeting the navigate-
to directive, does not cause a meaningful increase in the
loading time of the Web site. The loading time increased by
6ms in comparison to the first CSP.

The last CSP, which is a merged version of the first three,
seems to do exactly what is expected. The loading time of the
Web site is defined by the combined loading time effects of the
three individual CSPs. Most of it is dominated by the second
CSP, triggering the ’unsafe-hashes’ feature. However,
it only increased by about 2ms in total. This originates from
the restriction on execution of inline scripts due to CSP 3.

Fig. 12: Google Chrome: Loading time of evaluation Web site per
retrofitter, showing time in milliseconds

We conclude that the structure of the CSP has an impact
on the overall loading time of the Web site. Depending on the
CSP’s structure, different retrofitters are triggered by design.
Moreover, the individual amount of work for each retrofitter
can be increased by the CSP. The retrofitting architecture
introduces a loading time overhead by retrofitting previously
unsupported CSP features. However, overall, the loading time
overhead was limited to about 22-23ms

2) RETROCSP overhead: Apart from this, we also analyzed
the general overhead of the individual retrofitters. To assure
that all measurements take place under the same conditions, we
only used CSP #5 which triggers all retrofitters. We compared
the results of the unmodified browser with five RETROCSP
configurations by de-/activating individual retrofitters:

1) no retrofitter activated
2) only StrictDynamicRetrofitter activated
3) only UnsafeHashesRetrofitter activated
4) only NavigateToRetrofitter activated
5) all retrofitters activated

All measurements were taken in the same environment, al-
lowing us to calculate the full overhead of each retrofitter.
Furthermore, we could deduce the pure overhead introduced
by the proxy functionality of the organizer. The overview of
the results is shown Fig. 12.

When visiting the test Web site without RETROCSP de-
ployed at all, we measured a loading time of 20-21ms. If we
compare this value with the loading time of the Web site when
RETROCSP is fully activated, we can compute a difference of
about 21-23ms on average. This difference yields the overhead
of the entire retrofitting architecture, both the organizer as well
as all three retrofitters.

Although this value might suggest a runtime overhead of
100%, several facts must be considered. First of all, the
evaluation Web page is very small. Its size is only 1.98KB. The
Web site does not include any external resources, no images,
nor does it frame any other domains. Furthermore, the server



hosting the Web site was running on the same machine and
served the Web page via localhost. As such, it is almost
impossible to receive a server response in a faster way. This
is also visible in the difference of the Web site’s loading time
when configured with the first and fourth CSP of Fig. 11. Even
small code execution differences have a visible impact on the
total loading time. The average loading time of Web pages
is about 10.3s [13]. Conclusively, a loading time increase of
21-23ms on average yields a total runtime overhead of about
0.2%. By design, the work performed by the retrofitters is
constant and completely independent of the network. Hence,
we argue that an overhead equivalent to serving 1.98KB of
data via localhost can be considered negligible.

To determine the organizer’s effect on the architecture’s
runtime, we compare the overall loading time effect of
RETROCSP with the measurement results when no retrofitter
was activated. As we can see, the runtime of the organizer
seems to be minimal as the results seem to be equivalent
to those of the vanilla browser. The organizer does not
seem to have a perceptible effect on the runtime of the
retrofitting architecture. We deduce that the proxy functionality
of RETROCSP does not affect the user experience at all.
Hence, the proxy phase of each retrofitter only has a small
effect on the architecture’s runtime as well.

The StrictDynamicRetrofitter did not increase the loading
time meaningfully. It only raised the average loading time by
about 1ms. This is not very surprising, as the StrictDynami-
cRetrofitter only hooks two methods during its client phase.
As such, the first retrofitter seems to account for 4-5% of
RETROCSP’s overhead.

On the other hand, the UnsafeHashesRetrofitter might dom-
inate the runtime of the entire architecture. In comparison to
the vanilla browser, it raised the overall loading time of the
Web site by around 19-20ms. This is equal to 85-90% of the
architecture’s loading time overhead. The second retrofitter is
responsible for categorizing code based on its hash value. The
synchronous hash computations might be the cause for the
dominating effect on the architecture’s runtime.

The last retrofitter, the NavigateToRetrofitter, only increased
the average loading time by a small factor. We measured an
average raise of 2-5ms which is way less than the effect of the
previous retrofitter. Thus, the NavigateToRetrofitter represents
about 10% of the entire architecture’s runtime. This is twice
as much as the StrictDynamicRetrofitter. While this retrofitter
also hooks a DOM method, it also installs a Mutation Ob-
server, which accounts for the remaining overhead.

As discussed, the retrofitting architecture’s loading time
overhead is dominated by the client phase of each retrofitter.
In particular, the UnsafeHashesRetrofitter has the most observ-
able impact on RETROCSP’s runtime.

The second performance measurements could verify the
results of analyzing the impact of the CSP structure. The run-
time seems to be directly defined by the triggered retrofitting
module. The overhead of each retrofitter was equivalent to the
overhead provided by the corresponding CSP.

All in all, the retrofitting architecture at most raised the

loading time of the Web site by about 22ms. As mentioned
before, we consider this to be a negligible overhead that cannot
outweigh the improved CSP support.
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