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Abstract—More and more people use the Web on a daily
basis. We use it for communicating, doing bank transactions, and
entertainment. This popularity of the Web has made it one of the
main targets of attacks, most prominently Cross-Site Scripting
(XSS). To mitigate the effect of those attacks, the prevalence of
the Content Security Policy (CSP) is increasing. Such a policy
allows developers to control the content that should be allowed
on their Web applications precisely. Because this content includes
JavaScript (via the script-src directive), it can also be an effective
tool to mitigate the damage of markup injections such as XSS.
Developers can specify fine-grained policies for scripts to only
allow trusted third parties and disallow the usage of functions
like eval and its derivatives that directly execute strings as code.
As the whole Web is still evolving, so is CSP. The experimental
source-expression unsafe-hashes aims to ease the adoption
of secure CSPs, by allowing trusted scripts to be used as inline
event handlers for HTML tags, which is currently only possible
by blindly allowing all inline scripts to be executed. Our goal
is to analyze if this expression is able to improve the security
of a Web application or if it mainly provides a false sense of
security because it still enables attackers to bypass the CSP.
We built an automatic crawler utilizing dynamic JavaScript
analysis using taint tracking and forced execution to detect
security vulnerabilities of inline event handlers. This crawler
visited 753,715 unique URLs from the Alexa Top 1,000 domains
up to a maximum of 500 URLs per domain. We collected a total
of 735,105 individual event handlers, where 443 of those had
attribute values that flow into a dangerous JavaScript sink. Our
manual analysis of the event handlers revealed that 370 of those
handlers on 34 different domains are still vulnerable in presence
of a CSP that contains the unsafe-hashes expression. We
show that attackers can exploit these flows with only partial
injections, such as adding new attributes to existing tags in most
cases and discuss the impact of our findings on the future of the
CSP standard.

I. INTRODUCTION

Cross-Site Scripting (XSS) is still one of the most common
vulnerabilities in modern web applications [24]. An attacker
injects data into a page that is misinterpreted as code allowing
the attacker to steal credentials, hijack sessions, or perform
state-changing actions on behalf of the user like issuing
bank transactions or sending emails. In order to get more
fine-grained control over the JavaScripts that are executed
in the context of a Web site, the operator of the site can
deploy a Content Security Policy (CSP) via an HTTP header
or HTML meta tag. By controlling the origins from which
content can be loaded, e.g., of scripts, the attack surface of
markup injections can be minimized. However, research has

shown that the vast majority of policies deployed in the wild
are trivially-bypassable because inline scripts are allowed via
the unsafe-inline keyword, wildcards are used in the
allow-list, or other insecure practices [39, 30]. However, some
practices in HTML require the usage of those insecure source
expressions. For example, inline event handlers only execute if
unsafe-inline is present. Steffens et al. [37] have shown
that many third-parties are injecting markup that contains
inline events handlers, which forces the first party to deploy a
trivially bypassable CSP to not lose functionality. In addition
to that Roth et al. [31] also confirmed that third-party behavior
is one of the major roadblocks for secure CSP deployment.
In order to get rid of the inline event handler problem,
unsafe-hashes [8] has been proposed as an addition to
the CSP standard. This source expression allows the usage of
inline event handlers (e.g., onerror=alert("Error"))
when the hash of the event handlers code is present in the
allow list for script content. In theory, this should be more
secure than allowing all inline code via unsafe-inline
because an attacker can not just inject his script directly but has
to reuse already present event handlers to trigger unintended
behavior. That is possible because its script code hash stays
the same no matter where you use the event handler. Notably,
the CSP standard does not recommend unsafe-hashes for
modern web applications, as it may expose interesting capa-
bilities, like issuing transactions in online banking. Although
this might indeed happen, those cases are hard to identify
automatically because the function itself might not reveal
the state-changing action that might happen on the server-
side. Therefore, our attacker model considers XSS or DOM
manipulation by injecting an attacker-crafted HTML element
with the allowed event handler. Additionally, the allowed
handlers can be run as a standalone script, as the hash for event
handlers is not treated differently from the hash of a script tag.
At the time of writing, only chromium-based browsers support
the experimental unsafe-hashes expression, while other
major browsers such as Firefox or Safari are not supporting
the expression. We want to help in understanding if real-world
event handlers indeed suffer from those code-reuse attacks or if
using unsafe-hashes instead of unsafe-inline might
be the better option.

To answer this research question, we make the following
contributions throughout this work:



• We utilize dynamic JavaScript analysis using taint track-
ing and forced execution, similar to PMForce [35], to
detect if an XSS attacker could reuse allowed event han-
dlers to trigger script execution in case of real-world event
handler collected from the Alexa Top 1,000 domains from
the 30th of August 2021 domains.

• We discuss the impact of our results on the ongoing
discussion about the unsafe-hashes expression and
elaborate on other mitigations for this problem that might
be possible.

II. BACKGROUND & RELATED WORK

This section describes the technologies used in this work
as well as related work. In particular, we outline Cross-
Site Scripting (XSS) and explain the Content Security Policy
(CSP) as a mitigation technique for this attack. Additionally,
we present related work on JavaScript analysis, especially
PMForce created by Steffens and Stock [35], which analysis
approach is also used in this work.

A. Cross Site Scripting

Cross-Site Scripting (XSS) has been one of the most
prevalent security vulnerabilities for over 20 years[4]. Since
its initial discovery in 1999 [29] numerours papers showed
different dimensions and attack vectors that can lead to this
attack [28, 21, 19, 38, 32, 17, 22, 18, 16, 23, 36].

In essence, this content injection vulnerability allows an
attacker to inject and execute their malicious code into a
vulnerable Web site. This data is then misinterpreted as benign
code and is executed inside the victim’s browser context,
which effectively bypasses the Same-Origin Policy (SOP). The
adversary now has the same privilege as scripts that originate
from the vulnerable site itself. It often is sufficient to exfiltrate
the victim’s cookies to the attacker’s endpoint, to impersonate
the user. In order to avoid this, authenticating session cookies
should set the HttpOnly flag to prevent this session from
being stolen.

The root cause for XSS is the misinterpretation of data and
code. This can happen when the user input is not properly
sanitized. As HTML is just a markup language, an attacker
may break out of the context like an attribute name or plain
text when given the opportunity to inject certain characters.
An example of a reflected server-side XSS vulnerability in a
python flask [5] server code is depicted in Listing 1.

Here the argument name that we supply to the web appli-
cation is just echoed back by the webserver. Thus, visiting this
site with a URL like
http://example.com/?name=<script>alert(1)<
/script> opens an alert box. This is an elementary example
of reflected server side XSS. There is also reflected client-side
XSS where code like document.write("Hello, "+
location.hash); is executed inside the victim’s browser.
Location.hash refers to the part of the URL that comes
after the # that is not sent along to the server. In these
cases, the payload resides inside the URL and is therefore not
persistent. When a vulnerable server builds a response based

@app.route("/")
def hello():

return f"Hello, {request.args ⌋
.get('name')}!"↪→

Listing 1: Example python flask code of an reflected server-
side XSS vulnerability.

on a malicious database entry, it is called persistent server-
side XSS. Cookies with a dangerous value that flow into, e.g.,
eval unescaped are an example of persistent client-side XSS.

The above-mentioned examples did not need a break out of
context. When the injection point is inside a tag, the attacker
may need to end that tag and then start a script tag. If it is
inside a string, the payload usually starts by closing that string.

In this work, we focus on XSS that can be triggered by
injecting a malicious tag that reuses a vulnerable event handler,
as the handler code is only called when the specified event is
triggered.

B. Content Security Policy

XSS is the execution of attacker-created scripts in the
context of a vulnerable Web site. The Content Security Policy
(CSP) is a mitigation for this kind of behavior. It enables
the developer to explicitly allow certain trusted resources and
disallow certain vulnerable JavaScript constructs like eval.
The browser checks if the Content-Security-Policy
header is present that contains the specified policy and
enforces it. This means if the browser does not support
it, users of the Web site are not protected. To ease de-
ployment of a CSP, Web servers can specify the pol-
icy in the Content-Security-Policy-Report-Only
header. This allows developers to receive violation reports if
the specified policy was too strict or XSS was exploited.

1) Version 1: The first version of CSP[10] was proposed
in 2010[33], adapted in 2012, and had minimal capabilities
compared to more recent versions. Version 1 allows you to
specify the source for web content for scripts, images, styles,
fonts, objects, media, iframes, outgoing connections, and a
default fallback if a type is not specified. The origin be can
set to:

• Domains that may contain a path
• Domains containing a wildcard to allow certain subdo-

mains
• Just https to enforce encrypted communication

If the script-src (or its fallback default-src) is
specified, inline scripts and inline events are forbidden and
will not be executed. The only way to enable those features
again was, using the unsafe-inline expression in the
directive. That means each inline script needs to be hosted on
an allowed domain and then included using the src attribute
for a script tag. Similarly also includes event handlers, as
they are basically inline scripts, need to be programmatically
added in those external scripts. Although there are tools that
approach the automation of this task [14, 25], the vast majority
of all CSP in-the-wild still contain unsafe-inline making



them trivially bypassable by an attacker [40, 39, 12, 30].
In addition to that string-to-code functions like eval are
disallowed by default and need to be explicitly re-enabled with
the unsafe-eval expression.

2) Version 2: As using unsafe-inline defeats the
purpose of CSP as an XSS mitigation and refactoring Web
sites to conform to these requirements requires massive engi-
neering effort, CSP Level 2 [11] introduced nonces and hashes
to allow specific inline scripts to be executed. Alongside
with new directives such as base-uri, form-action and
child-src this change should ease the deployment of CSP
and give the operator even more fine-grained control over their
resources. The inline scripts now do not need to be extracted
and hosted somewhere, but the hash of the script’s source
code may be added to the CSP to allow it. Also, nonces can
be used that are specified with the nonce attribute of script
tags, which, however, requires the CSP and the source code
always to carry a fresh nonce.

3) Version 3: A common practice in the Web is that one can
dynamically add content, such as scripts, to a Web site. Espe-
cially in the context of advertisements, dynamically added new
script hosts are common [37]. This practice, however, causes
massive effort in maintaining CSPs because those dynamically
added new scripts need to be allowed in the policy. In order
to ease this the current version 3[41] of CSP additionally
added the script-dynamic expression [39], which enables
allowed scripts to propagate their trust to their new added
scripts. If the new expression is present, scripts have to contain
a nonce or a hash, and other source expressions like domains
are ignored. This means that the allowed scripts can load all the
necessary scripts they need without constraints. One exception
is that the added scripts can not be parser-inserted. Thus, they
can not be added by functions like document.write, but
by functions like appendChild.

4) unsafe-hashes: The focus of this work
unsafe-hashes was not mentioned before because it
is not part of a standard yet. It allows developers to allow
event handlers by adding unsafe-hashes to their CSP
and adding the hash of their event handler to it. This could
be used to adapt CSP for Web sites more efficiently, as they
can just allow all used event handlers without needing major
refactoring. As the hash does not rely on the location of the
event handler, it can be reused anywhere on any event. An
attacker may be able to inject a malicious tag where the event
handler misinterprets data as code and executes it either by
evaluating it or by appending it to the document. Firefox
implicitly supports this behavior because it treats inline event
handlers as regular scripts.

C. JavaScript Analysis

The usage of taint tracking[13, 20] to trace how a particular
variable or object modifies the program state can ease the
analysis of code to find vulnerabilities.

Lekies et al. [22] modified Chromium’s JavaScript engine to
taint attacker-controllable inputs, such that they can discover
flows to dangerous functions that lead to XSS. Using this

approach, they were able to identify 6,167 unique vulner-
abilities among the Alexa top 5,000. While that approach
offers a significant performance benefit over taint tracking
directly in JavaScript, the major drawback is the complexity
of modifying the JavaScript engine itself. Therefore Steffens
and Stock [35] used the dynamic code analysis tool Iroh [1]
to investigate the exploitability of postMessage event handler
directly in the JavaScript context of the web application. They
used the browser instrumentation framework puppeteer[7] to
collect postMessages handlers from the Tranco [27] top
100,000 domains. By combining force execution with the taint
tracking, they also investigated program paths that would not
be reached and collected the necessary constraints to reach the
vulnerable code. After that, constraint solving was applied to
determine the satisfiability of reaching the sink along with their
exploitability. This yielded 251 unique potentially exploitable
data flows, of which the authors automatically verified 111.
Notably, the authors open-sourced their code [6], which is
why we rely on their dynamic analysis approach to collect the
flows from our event handlers to the dangerous JS sinks.

Besides these dynamic analysis approaches, there exist
sophisticated static analysis methods that are usable for con-
ducting such research as well. Browser extensions were ana-
lyzed to discover suspicious flows[26, 34]. Having no runtime
environment requires the reconstruction of program states
through parsing the JavaScript code. The code is parsed into
an Abstract Syntax Tree (AST). A graph is populated using
the AST containing data and control flows. In addition to
that pointer, analysis was used to determine the source and
destination of variable changes. That knowledge was then used
to discover flows ending in suspicious actions by the browser
extension[15].

III. METHODOLOGY

In this section, we explain our Attacker Model as well as
technical details and implementation of the crawler and the
analysis.

A. Attack Model

As we want to evaluate the security of unsafe-hashes,
we define our attack model around it. Therefore the pages we
visit have a hypothetical CSP in place that allows all of their
inline event handlers and inline scripts. The attacker has an
injection point somewhere inside the HTML document where
he can input unsanitized data; the typical setting for XSS. Even
though he could inject just a script tag, the CSP would forbid
executing it. Hence the attacker tries to reuse existing allowed
event handlers to execute a malicious payload in the end. This
can be done by injecting a new tag with his malicious payload.
Since allowed event handlers can be reused on arbitrary events,
it is relatively easy to trigger event handlers for arbitrary tags.
There are even interactive cheat sheets that show which events
can be triggered with and without user interaction for each
tag [9]. Therefore executing the handler is not a problem,
and the main challenge is crafting a tag that lets you partially
run JavaScript or control input to particular sinks.



B. Implementation

The following subsections describe the architecture of our
analysis pipeline and how it is used to find potentially vul-
nerable event handlers. We begin by describing our JavaScript
analysis approach and then describing how to integrate it into
an automated framework.

1) Analysis technique: Here we go into details on how the
handlers were found, what method of analysis we used and
what benefits and limitations they offer.

Scope: There are multiple ways a handler can influence the
web application state. For this work we defined the following
behavior as security critical:

1) Functions that directly execute code, namely eval,
setTimeout and setInterval.

2) Functions that modify the raw HTML
of the page, namely document.write,
insertAdjacentHTML, $.html, Even though
this may not lead to XSS in our attack scenario, since
we have a hypothetical CSP, the attacker can still inject
new HTML code at other positions. The jQuery variant,
however, directly evaluates script tags, which could
be exploited if unsafe-eval is allowed in the CSP
config.

3) Functions that access the cookies through using
document.cookie are also interesting for this work
because the cookie itself may lead to another vulnera-
bility [36]. Cookies are often not considered user input
and, therefore, sometimes not correctly escaped when
used in the application. This could lead to stored XSS
vulnerabilities, which are hard for servers to detect.
LocalStorage belongs to the same category and is
monitored as well.

2) Dynamic JavaScript Analysis: The large-scale analysis
relies on automated toolchains to find the desired behavior.
Since JavaScript is a very dynamic language, it is a tough prob-
lem to analyze JavaScript statically. Although some advanced
approaches exist that utilize Control Flow Graphs and pointer
analysis [15] we decided to rely on dynamical analysis. This
has the advantage that we can analyze the JavaScript as we
collect it inside the context of the web page instead of recreat-
ing this setting during static analysis. Hence, our infrastructure
does the analysis inside a real Chromium Browser instructed
by puppeteer [7]. Our attack model assumes that an HTML tag
can be injected to utilize a potentially allowed handler. This
means that we want to find out if we can get code execution
when using existing event handlers. We call an event handler
with a special event object as a parameter and can define this
as our source object.

Taint Tracking In order to find these flows, we make use
of the dynamic JavaScript code analysis framework Iroh [1].
With code as input, Iroh builds a so-called stage where we
can register hooks for events like function calls, variable
assignments, if cases, and so on. This is done by parsing the
JavaScript code and calling the functions to hook it.

1 // before instrumenting the code
2 function onclick(event) {
3 vuln(event)
4 }
5 // after instrumenting the code
6 const $$STx1 = Iroh.stages["$$STx1"];
7 var $$frameValue = void 0;
8 $$STx1.$49(3)

// Program Enter↪→

9 $$STx1.$48(
// Frame Value↪→

10 $$frameValue = $$STx1.$2(2, this,
// Call↪→

11 function onclick(event) {
12 $$STx1.$4(4, this, onclick,

arguments); // Function
Enter

↪→

↪→

13 $$STx1.$2(1, this, vuln, null,
[event]); // Call↪→

14 $$STx1.$5(4, this);
// Function Leave↪→

15 }, null, [ev])
16 );
17 $$STx1.$50(3, $$frameValue)

// Program Leave↪→

18 // example use case
19 let listener = stage.addListener(Iroh.CALL);
20 listener.on("before", (e) =>

console.log("Calling: " + e.callee));↪→

21 listener.on("after", (e) => console.log(
22 "Return value of " + e.callee + " was " +

e.return↪→

23 )
24 );

Listing 2: Iroh stage instrumentation

As depicted in Listing 2 the program is parsed into a syntax
tree. Iroh then adds a corresponding function call around
certain operations that invoke the callbacks to the registered
listeners. Therefore the example snippet on line 18 can print
out the called functions and their return value.

This API allows us to inspect and modify the state of the
program before and after interesting operations. Now we need
a way to track the flow of our input (the event that is passed to
the event handler code). We, therefore, build a proxy around
our event, which is the argument of the handler. A Proxy is a
built-in object [2] that wraps around an existing object and can
be used to intercept and redefine its fundamental operations.
Therefore we can return new Proxies when operations involve
a Proxy object by overwriting them and returning a new
Proxy as a result. Said Proxy is seen as nothing special
by the analyzed program, but the handlers in our stage can
recognize, track and modify it. Therefore it is possible to hook
function calls and report them to our database if that function
is a defined sink and the argument is a Proxy meaning it is
somehow tainted by our input. Furthermore, it is even possible
to pick up constraints on the Proxies based on their history
of operations, allowing for better analysis. The advantages of
this approach are that we can run the analysis inside a normal
browser and don’t need to modify internal JavaScript engine



code.
This dynamic analysis would already find some vulnerable

handlers, but only in program paths that are actually reached.
To find potential flows to sinks like eval we are missing
branches of the program all the time. If we consider an if
statement that checks for the presence of an attribute on our
tag, we would not execute it as it does not exist. However,
our taint tracking allows us to evaluate the satisfiability of
constraints from our input afterward. Hence we can force
execute all branches and check later if it is even possible to
reach those paths.

Forced Execution Since some conditions may need to be
met in order to reach a sink, like having a custom attribute
or a certain global state, we may not find that path by simply
executing our staged code. We can, however, just force the
execution of branches as we please since we control the
conditions for them using registered handlers inside Iroh. This
means that we will explore all of the programs and check
later if we can reach that part somehow. A drawback of this
approach is that conditions may not depend on our input at
all or are nonetheless unsatisfiable. Since we can still alter
the global state of the program in our staged code and we
execute all paths, it is possible that we trigger unintended
behavior modifying the results of the rest of our analysis.
This is somewhat mitigated by replacing destructive calls like
removeChild with NOOPs. However, this can still lead to
unwanted side effects as non-obvious destructive calls may
alter the global program state.

Now that we have a proper method for analysis, we need
a crawling infrastructure that allows us to inject our analysis
code into the web pages.

3) Crawling the Web: Since we can run the analysis inside a
browser, we can use existing frameworks to inject the code into
each frame of the browser. Thus we use Google’s Puppeteer [7]
that controls a real Chromium browser through its developer
API. This has the significant benefit that we can access browser
internal functionality like modifying a page’s source code and
even expose functions to the browser window from within our
Node.js program. Therefore communication with the database
or accessing the local file system can be done inside of each
browser window. We, unfortunately, have a significant perfor-
mance drawback through this dynamic approach compared to
just statically collecting HTTP responses, but have the advan-
tage of running inside the most popular browser that renders
the page accurately, compared to requiring reconstruction of
this context using the static approach.

C. Building the framework

As PMForce [35] released its analysis pipeline [6], we
adapted it to fulfill our needs. This project contained the code
to set up the database and perform the previously described
dynamic analysis for postMessage handlers. The first problem
was that recursive crawling was not implemented in the open-
sourced version. This feature is essential as one would rely
on third parties for subdomains and other paths without it.
Therefore we implemented an additional module that collects

all references within the a tags. Puppeteer can be used to
evaluate a function inside the frames of the page, allowing to
easily collect the references to other pages. These are fed into
our database with additional metadata, so we can keep track
of features like crawling depth.

1) Finding event handlers: As we care about all handlers,
the hook needed to change that triggers when the handlers
are analyzed. Event handlers that are dynamically attached by
the function addEventListener are not interesting as they
do not reside inside the raw HTML document. We can abuse
Chromium’s behavior to find all the event handlers that were
present during the creation of the tag. This is important as
only these handlers would be relevant to be allowed in the
CSP corresponding CSP directive. Chromium returns null
using getAttribute for handler names that were added
afterwards.

1 <button onclick="handle_buttonclick()">
2 Click me!
3 </button>
4 <script>
5 button = document.getElementsByTagName('b ⌋

utton')[0];↪→

6 button.onmouseover =
function(){console.log('Hover')};↪→

7 button.addEventListener('onmousedown',
function(){console.log('MouseDown')})↪→

8 console.log(button.getAttribute('onclick' ⌋
)) //
handle_buttonclick()

↪→

↪→

9 console.log(button.getAttribute('onmouseo ⌋
ver')) //
null

↪→

↪→

10 console.log(button.getAttribute('onmoused ⌋
own')) //
null

↪→

↪→

11 </script>

Listing 3: getAttribute behavior for different handler declara-
tions

When running the example above in Chromium, the output
in the comments is printed to the console. Firefox handles
this differently, so it is a special browser quirk that enables
us to distinguish these scenarios. Therefore we can query all
attributes of the tag with getAttribute, and if the result
is not null and the queried key is an event handler, we can
pass it to our analysis function.

2) Analyzing handlers: The analysis function creates a
ForcedExecution state of the function and calls the
instrumented Iroh code within it. When the browser executes
an event handler, it does not just evaluate the value of the
attribute but rather creates a wrapper function around it with
the event as the argument. Additionally, that function is
bound to the event’s source Element. Binding a function in
JavaScript replaces the this object that usually points to the
globalThis variable that is the same object as window
inside a browser context. To mimic this behavior, we create
our initial proxy event as the argument of the event handler
and bind the handler to event.srcElement which is



another way of accessing the HTML element that is called the
handler. As Iroh builds the stage from the string representation
of the event handler, the information to which object the
function is bound is lost. Therefore the instrumented Iroh
code needed to be modified to bind the handler. Functions
like srcElement and currentTarget are defined on the
srcElement of the event to mimic a real HTMLElement.
To ease debugging when verifying candidates, indentation was
added to the existing logging of the Iroh listeners giving a
better overview of the program execution.

IV. RESULTS

With the above-described crawling infrastructure, we
crawled the Alexa Top 1,000 domains, ending up in 753,715
unique URLs that used 735,105 unique inline HTML event
handler on their Web sites. As crawling uses bandwidth
and computing power for the server owners without gaining
anything, we do not want to create significant traffic for each
domain. Therefore, we limited the number of pages visited
per domain to 500. Our crawling depth was set to 50. Starting
URLs have a depth of zero, and when they encounter a new
link, it is incremented. Hence the maximum distance from a
link to the start can be 50. However, only a maximum depth
of 4 was reached on 15,917 URLs. Evidently, the pages we
visited contained too many URLs to reach a higher depth
within the web applications due to the per domain limit.

A. Handler analysis

There are two common ways to pass the element containing
an event handler to the handler function. The most common
way was to pass this as an argument to a function. Normally
this inside the JavaScript Browser context refers to the
global window object, however the this in an HTML
event handler is bound to the actual HTML element. Notably,
201,255 of the event handlers used this way to pass the
tag to the handler or modify it directly and not in a helper
function. Compared to that, only 71,837 used the event pa-
rameter inside the handler that contains the source element in
event.srcElement or event.currentTarget. This
leaves another 462,013 event handlers that do not obviously
make use of the element the handler was invoked on. As
JavaScript is a very dynamic language, we want to point
out that this is not an exhaustive way to access the called
event. If we have an inline handler defined as handle() that
takes no arguments one can still access the event through in-
voking arguments.callee.caller.arguments[0].
This works because every function has the special object
arguments that contains references to the caller. Usually,
the arguments object is just used for functions with a dynamic
attribute count, as you can iterate over the arguments object
to get all the function parameters. Unfortunately, Iroh requires
running JavaScript inside the strict mode[3]. It is a special
way to disable the implicitly used sloppy mode and was
introduced in ECMAScript 5. Strict mode raises some
errors that would usually be ignored and additionally forbids
certain JavaScript syntax like with. Along with some other
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Fig. 1: Distribution of discoverd flows across distinct sinks

changes, it also forbids using the arguments.callee
object. Our analysis pipeline would not catch handlers utilizing
these flows as the analysis context is set to strict. Since this
is an edge case and Iroh requires strict mode to prevent
unexpected behavior and to provide a correct function trace,
we can not further explore this behavior in this analysis.

Another possible way to bypass our analysis is to pass
a unique identifier to the element and look it up from
a global function. A basic example would be to pass
the id of a tag as a String and then the handler uses
document.getElementById. Since we only track access
to this and event, it is impossible to find such behavior
for us. However, it is unlikely that such code is common,
especially among the Alexa Top 1,000 domains, due to main-
tainability and readability.

Due to the complexity of HTML elements, we cannot rely
on the exploit generation inherited from the PMForce project,
which worked because postMessages have a simpler structure.

1) Manual Analysis and Verification of Discovered Flows:
Manual analysis of the handlers is a tedious process. By adding
logging capabilities to our framework, we could trace the
execution flow and see where the sink access occurred. In
most cases, the call depth was below three allowing for quick
verification. Three Web sites using anti-debugging protection,
like blocking debugger commands and clearing console logs,
were encountered and only partially analyzed due to time
constraints.

From the 735,105 distinct handlers, our analysis pipeline
identified 443 handlers from 84 different domains as
potentially problematic flows. An example of such
a real-world handler is presented in Listing 4. This
snippet is used by major advertisement companies, such
as googlesyndication.com, ad-srv.net and
adform.net. If an attacker is able to inject a malicious
tag containing the data-onload attribute, XSS can be



1 function onload(event) {
2 eval(this.getAttribute('data-onload'))
3 }

Listing 4: Vulnerable event handler used by ad companies

1 function onblur(event) {
2 deactiveMe(this);
3 }
4

5 function deactiveMe(obj) {
6 if (obj.name.indexOf("sisDetail") ==

0) {↪→

7 var objName = obj.name.substr(0,
obj.name.length - 1);↪→

8 objName = objName.substr(objName. ⌋
lastIndexOf("[") +
1);

↪→

↪→

9 eval("var re = /\\\[" + objName
+ "\\\]/g");↪→

10 objName = obj.name.replace(re,
"[_op_]");↪→

11 if (document.getElementsByName(ob ⌋
jName).length > 0)
{

↪→

↪→

12 var hidOp = document.getEleme ⌋
ntsByName(objName);↪→

13 hidOp[0].value = 1;
14 }
15 }
16 return;
17 setTimeout("deColor4('"+obj.id+"')",1 ⌋

00);↪→

18 }

Listing 5: Vulnerable event handler using eval for regex

triggered by reuse the body of the handler for evaluating
arbitrary code.

Among the 443 handlers, we manually analyzed and verified
all handlers with an exploitable source object. We also discuss
some techniques used to build exploits for certain sink objects.

Across all the handlers we can observe that only flows to
three distinct sinks were found. Namely innerHTML, eval
and cookie.

As depicted in Figure 1, flows to innerHTML are by far the
most prevalent with 280 occurrences. It is followed by eval
having less than 50% of innerHTMLs with 135 occurrences.
As setting cookies within event handlers seemed unlikely as
localStorage seems more fitting we surprisingly found 28
flows to cookies. In the following subsubsections, we dive
deeper into each of these categories of findings by highlighting
case studies and discussing their necessities.

eval Even though flows to innerHTML are more prevalent
than eval exploiting such flaws is not as impactful since the
premise of our attack is the capability to inject some form of
HTML. Flows to eval are the most problematic as they lead to
direct XSS. It is not clear to us why web developers use eval so
frequently. In most cases, this could be trivially replaced, for
example, in the real-world code snippet presented in Listing
5. The last character of the name attribute is removed in line

1

2 function onclick(event) {
3 return bls(this)
4 }
5

6 function bls(a) {
7 var b = gf("FBD");
8 sd(b, blo);
9 if (-1 === blo) {

10 a = a.href;
11 a = a.match(/\.html/) ?
12 a.replace(".h", "-frame.h")
13 : a.match(/\?/) ?
14 a.replace("?", "-frame?")
15 : a + "-frame";
16 var c = document.body.offsetWidth;
17 600 < c && (c = 600);
18 ih(b, '<iframe id=FBF

onload="siv(this, true);" src="'
+ a +

↪→

↪→

19 '" width=' + c + " height=800
frameborder=0>webmaster@timeandda ⌋
te.com</iframe>")

↪→

↪→

20 }
21 blo = !blo;
22 0 == blo && (b = gf("FBF")) &&

b.scrollIntoView();↪→

23 return !1
24 }

Listing 6: Vulnerable event handler using innerHTML

seven. If ”[” is not contained in the name, the following line
does nothing, and the string is thrown into eval between a
variable assignment and a regex. There is no reason to do
this inside eval, as global variables can be defined inside a
function as well. This pattern occurred very often. Expressions
are evaluated that could just be executed inline and instead are
passed to eval. No manually analyzed event handler contained
actual JavaScript code that would require dynamic evaluation.
This just shows again that client-side security is not a priority
for most Web sites, and eval should rarely be used. Out of
the analyzed flows to eval, only seven out of 135 can not be
abused.

innerHTML The impact of innerHTML flows is not as
relevant as eval. Since our attacker can already inject HTML
somewhere, the innerHTML could end up in a place where the
attacker previously had no control over. The majority of flows
to innerHTML can be bypassed by escaping it properly, like
in the example depicted in Listing 6: The HTML element is
passed along by the event handler to the bls function. In line
9, the tag’s href attribute is selected, and in the following line,
it is matched against some regex. We could simply leave out a
".html" to not trigger the replacement. In line 13, ih points
to innerHTML, and we create an iframe by concatenating the
parameters with their tag names. By starting with a quotation
mark, we can end the src attribute and begin writing a new
tag or modifying the iframe.

This behavior is observed for most handlers
and is considered bad practice. The correct way



of implementing this feature would be to use
document.createElement(’iframe’) and set
the properties there. An attacker could not escape out
of the attribute, and the tag can be added by, e.g.,
document.appendChild.

document.cookie Most of the flows to cookies allow an
attacker to influence the cookie value partially. However,
sanitization was not used. If the unescaped cookie value is
read and flows into other sinks like, e.g., eval, this would lead
to XSS again as demonstrated by Steffens et al. [36]. Since
this cookie string loses our Proxy property upon setting and
we only apply taint tracking on the handler, this behavior was
not further analyzed in this work due to the complexity of the
web applications for further manual analysis.

Unique tricks to break out of context We found 14 unique
source objects (see Table I) and we investigate how and if an
attacker could exploit them.

Trivial in the context of the table means that the HTML
parser does not replace characters, and therefore breaking out
of context is easy. Difficult means that the parser expects the
input to match a particular format like a URL or that the
parser modifies that attribute’s value. Setting the sink object
event.srcElement.childNodes.0.src to escape
out of context is not easy, as the src attribute is sanitized
and can not be set to arbitrary values. In most cases, the src
attribute contains a URL or a path. Using escape characters
in that scenario does not work as chrome URL encodes
them. The needed ” becomes a %22. A source attribute can
also be of other format like data:image/gif;base64
followed by the base64 encoded image. For unknown reasons
the parser does not check for illegal base64 characters and
we can escape out of context. So one discovered example
where the page constructs an HTML element via string
concatenation, we can use some base64 value and after it
specify the payload for the exploit like
<div><img src="data:image/gif;base64,
R0lGcGVzdG8K "onsmth="alert(1)"></div>.
Because of the childNodes.0, we need a tag containing
at least one child, and the first elements src property needs
to include the payload.

The href attribute is not parsed like src and can be set
to arbitrary values, even though it is a reference like src.

Html elements cannot have the attribute menu as a direct
attribute, as it was used in the pages we found. Even when
accessing it via getAttribute, attributes are strings mean-
ing you can not set the id attribute. A helper function was
used inside the handler that would check if the argument is an
object of a different ”type”, but our Proxy did not know that
property cannot exist.

The select tag can have children called option.
Therefore event.srcElement.options.0.value and
event.srcElement.options.0.text is exploitable if
the attacker can inject an additional tag and the injection point
is inside a select tag, or he can inject two new tags.

The event.srcElement.files.0.name is a bit
tricky. The element input can have the attribute files if it

has the attributetype=”file”. For security reasons, the default
value can not be set as Web sites could leak files from the
visitor’s file system. This means the user would need to upload
a file with a name that breaks out of context and contains a
malicious payload. As this is an implausible scenario, we do
not consider it exploitable.

Flows where the sink object is event.srcElement can
not be exploited to our knowledge as they simply return the
HTML element. These make up 53 of the found flows. All of
them are flows to eval.

V. DISCUSSION

We found 735,105 unique event handlers, and among those
443 from 84 domains were identified as problematic by our
analysis suite. Based on the source objects 62 handlers are
not exploitable. For the remaining 381 handlers, the manual
analysis revealed that only 11 of them are not exploitable.
Thus, we found 370 event handlers on 34 different domains
that are exploitable in the presence of unsafe-hashes in
the deployed CSP.

A. unsafe-inline vs. unsafe-hashes

Research has shown that the vast majority of policies
in the wild are trivially bypassable due to the presence of
unsafe-inline [40, 39, 12, 30]. Steffens et al. [37] have
shown on a technical level that this behavior is caused by
the inclusion of third-party code, which mandates the use of
unsafe-inline by adding inline events for 75% of the Web
sites. This technical observation was later confirmed in a
developer study by Roth et al. [31], where third-party code
was documented as one of the major roadblocks for CSP
deployment.

Therefore, we argue that although we found out that there
are 370 event handlers, that would cause 34 different domains
to be still exploitable, the advantages of unsafe-hashes
over unsafe-inline would still improve the security of
all other sites that are using event handlers. However, in
some cases, e.g., dynamically added code with ever-changing
hashes, or the sheer amount of code snippets that need to
be hashed and entered into CSPs allow-list can cause the
unsafe-hashes directive to not be usable in practice.
Notably, although unsafe-hashes is able to improve the
current situation, it will not be the savior of CSP, which is why
we should also discuss and elaborate on other alternatives to
ease the deployment of the security mechanism.

B. Alternatives to unsafe-hashes

One different mitigation of XSS would be to give each tag
a NONCE similar to script tags in combination with certain
CSPs. If the HTML parser encounters an element with an
invalid nonce or no nonce it is discarded. The idea is to
prevent attackers from injecting their own element into the
page. Experiments show that the positioning of the nonce
is important to provide security. Imagine a server sending a
response like



source object #domains #occurences satisfiyablity
event.srcElement.childNodes.0.src 1 257 needs new tag, difficult
event.srcElement.name 9 72 trivial
event.srcElement 50 53 no
event.srcElement.id 2 26 trivial
event.srcElement.innerHTML 5 12 needs new tag
event.srcElement.options.0.value 5 5 needs new tag
event.srcElement.value 3 4 trivial
event.srcElement.href 3 3 trivial
event.srcElement.menu.id 2 3 no
event.currentTarget.menu.id 1 2 no
event.srcElement.files.0.name 1 2 requires user interaction
event.srcElement.value.length 2 2 no
event.currentTarget.src 1 1 needs new tag, difficult
event.srcElement.options.0.text 1 1 needs new tag

TABLE I: Source objects and their exploitability

'<a nonce=1234 href=' + query['href'] + '></a>
<a nonce=1234></a>'.
An attacker can freely add new attributes to the tag but
cannot create new HTML tags because he does not know the
NONCE. In this scenario, the NONCE from the second a tag
cannot be stolen as well. With a server code like:
'<a href=' + query['href'] + 'nonce=1234 ></a>
<a nonce=1234></a>'
the attacker could create a new valid tag because the nonce
comes after the malicious input. The first benign a tag would
have no NONCE and be discarded by the parser. Even though
the tag can not be properly closed, the HTML parser will
happily read it and close the tag for you. Therefore the nonce
should be at the beginning of a tag. Otherwise, we do not
gain much security. This would also prevent the attacker
from adding additional tags as required by sink objects like
event.srcElement.options.0.value. In a third
scenario like this:
'<a nonce=1234 href=' + query['href'] + '></a>
<a href="asdf"nonce=1234></a>'
the attacker can hijack the NONCE from the second tag to
create a new Element. With the current lax HTML parsers an
injection like "213"></a><a test=" would end up with
a new tag <a test="></a><a href="asdf"=""nonce=

"1234">. If the nonce would be at the start, however, this
could likely not be exploited. Therefore correctly noncing
elements would prevent attackers from injecting new tags
but still allows new attributes to be set. One could overcome
this by setting default values for all the attributes, so an
attacker can not overwrite them again. This, however, seems
infeasible as it would drastically increase HTML file size
and requires more refactoring than adding dynamic attributes.
Therefore, we conclude that noncing tags would improve
client-side security if placed as the first attribute. But because
this requires heavy modification of web applications, it is not
deployable in the real world.

C. Assisting Developers

Given our results, we currently have no secure and easy-to-
use way to deploy a sane CSP while at the same time using

inline events handlers. Therefore we argue that the best way to
solve this problem is to work together with the Web developers
and provide them with the tools to create CSP compliant code
and deploy a sane CSP.

The best way is to eradicate the problem before it actually
occurs. Therefore, the IDEs need to display warnings during
the creation of a Web application. Developers know that
using inline code will result in an application that a CSP
can not protect. Even coding suggestions to automatically
convert inline events to programmatically added events might
be possible. This automatic conversion could also enable
developers of existing applications to make their applications
CSP compliant. Notably, however, all these efforts can not
work without third parties getting compliant with a secure CSP
at their client’s applications. Notably, their incompatibility
with CSP only hurts their clients but not the services themself.
Thus, encouraging the third parties to make their code CSP
compliant will require a ”political” solution. Organizations
such as the World Wide Web Consortium (W3C) or the
browser vendors themself need to work together with the third-
party providers on a solution for the general problem of third
parties that are blocking the usage of secure CSPs.

To secure legecy Web applications, we reccommend using
CSPs report-only mode to collect data about policy violations
without enforcing the policy. Depending on the amount of
unique violations by event handlers teh developer could then
use unsafe-hashes, if only a few unique violation occur. If
however, to many uniquie violations happen, we reccommend
the refactoring of inline events into nonced inline scripts, such
that the amount of allowed event hashed does not lead to an
hard to read, and thus hard to maintain, CSP.

D. Beyond injecting event handlers

One premise of our attack model is the capability to inject
HTML code into a page, but not JavaScript as a hypothetical
CSP exists. The question to answer in this subsection is
whether we can loosen this requirement by exploring what
exactly we need to inject and what some potential mitigations
could look like. One possibility is not to inject new tags
but rather hijack ones when unsanitized code is injected into



attributes. This is a realistic scenario since certain attributes are
dynamically filled in by the server with potentially unsanitized
data. If an attacker can break out of the context with escape
characters like ” or ’ we end up with a partial tag injection.
When the HTML parser encounters duplicate attributes, only
the first occurrence is kept, and the following attributes of the
same name are removed. Capitalization of attributes is ignored
when parsing and removed by the browser as well. We tested
this behavior on Chromium Version 92.0.4512.0 and verified it
with Chromium Version 94.0.4606.50 and Firefox 92.0. For an
attacker, this means he can not replace attributes within a tag
defined before his injection point. If a certain attribute value
is needed and it is already set, an attacker needs to create a
new tag, or exploitation will not be feasible.

E. Limitations

The conclusion we draw is based on the results of our
analysis pipeline and manual verification of exploit candidates.
We believe that the number of problematic handlers is higher
than our measurement. There are only five false positives that
we picked up, namely event.srcElement.menu.id as
the source element. False positives, in this case, mean that
the attacker cannot modify the value of the attribute that has
flows to a sink. This occurred because a called function takes
different types of objects as parameters and checks if these are
present. Thus, our automated analysis found flows to sinks that
are not necessarily exploitable by an attacker.

Additionally, we defined the length attribute not to be
exploitable as it would always be an integer. Other than that,
only the event.srcElement is not exploitable because it
returns the element itself. As these cases can easily be filtered,
we conclude that our approach has a very low false-positive
rate. Chromium also gives us the benefit to detect in-HTML
event handlers, meaning that we found no handlers that were
added dynamically to the element. Compared to that, false
negatives are likely higher. One reason for it is the force
execution that may break the environment. Code that calls
a variable pointing to a function could be set to a different
function inside a force-executed branch that would not be
possible during normal execution. Therefore we analyze a
different function or no function at all, missing out on potential
flows. We did observe one such case during manual analysis,
leading to a false positive. However, we cannot quantify
the impact of this regarding false negatives. An additional
undesired side effect is the modification of the global state
in a way that the standard handler would not have, leading
to different analysis outcomes for the following handlers on
that page. Therefore a more sophisticated approach could be
used that can restore program states after force executing
branches. It would yield better results regarding false positives
and negatives.

Due to the internals of the Iroh framework, we could not
analyze JavaScript that makes use of ECMAScript 6. While
the code is still executed, we can not observe the outcome or
manipulate these statements. Additionally, it required running
JavaScript in the strict mode that breaks some web appli-

cations. Implementing variable tracking could be of value,
as it would allow tracking how an attacker may modify the
global state of the program. The sites we visited are also not
crawled using the session cookies of a logged-in user. We,
therefore, miss out on web applications that are hidden behind
an Authentication mechanism.

PMForce, the basis for our crawler, utilized constraint solv-
ing to generate payloads for vulnerable handlers automatically.
The event of a postMessage is more straightforward than an
HTML element and was therefore discarded in our research.
However, based on the source objects we found, one could
create exploit templates that could verify some cases. Further
work may utilize this method for larger crawls that have too
many candidates to verify manually.

Lastly, we only checked supported Chromium event han-
dlers. There are other browsers like Firefox, Safari and Opera
that implement browser-specific event handlers. Therefore our
hook may have missed existing event handlers, that even
though they are not executed in Chromium, could be reused
in our attack scenario.

Weighting the above-discussed limitations, we conclude that
further work can find more problematic flows by discovering
more features of web applications using sessions and looking
for more handlers. Additionally, the analysis itself has some
drawbacks that can be improved. Still, it is improbable that
their findings would change our conclusion as the results
would not vary by order of magnitude.

VI. CONCLUSION

Throughout our analysis, we identified 370 event handlers
on 34 different domains that are exploitable in the presence
of the unsafe-hashes expression in the deployed CSP.
Although the re-usage of event handlers that are allowed
via their hashes is seemingly a problem that occurs on real-
world Web applications, we argue that still unsafe-hashes
can ease the deployment of a CSP to effectively mitigate
XSS. All domains that are using inline events only have
the option to use unsafe-hashes, or to effectively allow
all script executions by not deploying CSP or by deploying
a trivially bypassable CSP that includes unsafe-inline.
Thus, unsafe-hashes is currently the lesser of the evils
that emerge during the deployment of a CSP. Notably, other
possible solutions, such as the possibility to nonce all HTML
nodes, might have similar issues because nonces could be
stolen depending on the injection point, which results in a
bypass of the deployed CSP.

The only way to securely get rid of the problem of inline
JavaScript code is to not use it. To achieve that, we have to
encourage developers not to use inline code from the beginning
of a project, and we need to support developers during the
migration process from inline event handlers to dynamically
added ones. While unsafe-hashes is a first step towards
an easier-to-use CSP, there is still work to be done to help
CSP effectively mitigate XSS attacks.
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Ben Stock. Doublex: Statically detecting vulnerable data
flows in browser extensions at scale. In ACM SIGSAC
Conference on Computer and Communications Security
(CCS), 2021.

[16] Ben Hayak. Same Origin Method Execution
(SOME). Online at http://www.benhayak.com/2015/06/
same-origin-method-execution-some.html, 2015.

[17] Mario Heiderich, Marcus Niemietz, Felix Schuster,
Thorsten Holz, and Jörg Schwenk. Scriptless attacks:
stealing the pie without touching the sill. In ACM

SIGSAC Conference on Computer and Communications
Security (CCS), 2012.

[18] Mario Heiderich, Jörg Schwenk, Tilman Frosch, Jonas
Magazinius, and Edward Z Yang. mxss attacks: Attack-
ing well-secured web-applications by using innerhtml
mutations. In ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2013.

[19] Markus Jakobsson, Zulfikar Ramzan, and
Sid Stamm. Javascript breaks free. http:
//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.85.3195&rep=rep1&type=pdf .

[20] Rezwana Karim, Frank Tip, Alena Sochurkova, and
Koushik Sen. Platform-independent dynamic taint anal-
ysis for javascript. IEEE Transactions on Software
Engineering, 2018.

[21] Amit Klein. Dom based cross site scripting or xss of the
third kind. http://www.webappsec.org/projects/articles/
071105.shtml, 2005.

[22] Sebastian Lekies, Ben Stock, and Martin Johns. 25
million flows later: large-scale detection of dom-based
xss. In ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2013.

[23] Sebastian Lekies, Krzysztof Kotowicz, Samuel Groß, Ed-
uardo A Vela Nava, and Martin Johns. Code-reuse attacks
for the web: Breaking cross-site scripting mitigations via
script gadgets. In ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2017.

[24] MITRE. Common vulnerabilities and exposures - the
standard for information security vulnerability names.

[25] Xiang Pan, Yinzhi Cao, Shuangping Liu, Yu Zhou,
Yan Chen, and Tingzhe Zhou. Cspautogen: Black-box
enforcement of content security policy upon real-world
websites. In ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2016.

[26] Nikolaos Pantelaios, Nick Nikiforakis, and Alexan-
dros Kapravelos. You’ve changed: Detecting malicious
browser extensions through their update deltas. In
Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security, 2020.

[27] Victor Le Pochat, Tom Van Goethem, Samaneh Tajal-
izadehkhoob, Maciej Korczyński, and Wouter Joosen.
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