
Measuring Developers’ Web Security Awareness
from Attack and Defense Perspectives

Merve Sahin∗, Tolga Ünlü†, Cédric Hébert∗, Lynsay A. Shepherd†, Natalie Coull†, Colin McLean†
∗SAP Security Research, France

{merve.sahin, cedric.hebert}@sap.com
†Division of Cyber Security, School of Design and Informatics, Abertay University, Dundee, United Kingdom

{t.unlu1200, lynsay.shepherd, n.coull, c.mclean}@abertay.ac.uk

Abstract—Web applications are the public-facing compo-
nents of information systems, which makes them an easy
entry point for various types of attacks. While it is often the
responsibility of web developers to implement the proper
security controls, it remains a challenge for them to develop
a good understanding of the whole attack surface.

This paper aims to understand developers’ familiarity
with a number of web attack and defense mechanisms. In
particular, we conducted two different experiments: First,
we employed a questionnaire to understand the perceived
attack surface and the types of security controls that are
often considered. Second, we designed a Capture the Flag
challenge aiming to push participants to discover as many
attack points as possible on a given web application. We
found that one third of developers are not aware of the
clients’ ability to intercept and modify all parts of an HTTP
request. Moreover, developers’ attack awareness focuses on
a limited set of attacks (such as Cross-site scripting and SQL
injection), overlooking a large part of the attack surface.

Index Terms—Web, Framework, Security Awareness, Secure
Software Development, CTF

1. Introduction

The security posture of web applications stands and
falls with their developers. While recent developments in
browser platforms and web application frameworks have
introduced built-in security controls, these do not always
guarantee protection as they require a developers’ aware-
ness and implementation of such controls. Moreover, the
security-relevant information sources available to develop-
ers can lack in quality [56], usability [16], and positioning
[27] aspects, as observed in recent work. On the other
hand, developers’ awareness and expertise on attacks and
security controls have shown to be correlated with their
ability to implement effective and robust defenses [35],
[26].

With simple to exploit and impactful threats such as
Insecure Direct Object Reference (IDOR) attacks com-
monly found in the wild [30], [29], it raises the question
if developers often lack the awareness for attack probes
that require nothing more than the submission of an
arbitrary input using a browsers’ developer console or an
interception proxy.

In this work, we aim to gain an understanding of
developers’ security and attack awareness from two per-
spectives: the defender and the attacker. Essentially, we

seek to find out: (i) to which level they are familiar with
the different types of security controls (e.g., client/server
side input validation, vulnerability-specific controls, log-
ging&monitoring) from a defensive perspective, and (ii) to
which level they are able to identify and carry out different
types of web attacks from an offensive perspective. We
address (i) by designing and conducting a questionnaire,
where the developers report their familiarity with security
controls and answer scenario-based questions. We then
address (ii) with a Capture the Flag (CTF) based experi-
ment that includes a large variety of attack points for the
participants to exhaust. These two experiments allow us to
make several observations on the possible root causes of
web application vulnerabilities. Some of our main findings
can be summarized as follows:
- A large majority of the developers reported to be famil-
iar with input validation controls, however, they are not
always aware that all parts of an HTTP request (including
the headers and method) may be tampered with.
- Some developers are completely unfamiliar with security
controls that are vulnerability-specific, access-control re-
lated, or logging/monitoring related. This result also goes
in parallel with the OWASP Top 10 vulnerabilities.
- Developers’ familiarity with web attacks is mostly lim-
ited to injection and credential guessing. This might have
an impact on their ability to implement strong defenses
against the large attack surface of web applications.
- Popular web frameworks often lack proper security-
relevant documentation, as they address a limited set of
attack vectors and do not mention all the built-in security
controls.

2. Related Work

Previous work employs surveys, design studies, and
programming tasks to evaluate the impact of developers’
information sources on code security [16], the usability of
security-related information in API documentations [27],
[65], and the impact of console warnings on the use of
security-related APIs [24], [25]. Our work uses similar
methods, but instead focuses on understanding developers’
overall awareness of the web security controls. As stated
by Acar et al. [17], security is often a secondary concern
for developers as opposed to aspects such as functionality,
compliance and speed. Thus, understanding developers’
experiences with security controls can help to reveal the
root causes of security issues, and see how these issues
can be addressed.

More recent studies that are closely relevant to our
work can be summarized as follows. Roth et al. [56]
investigated the practical issues in Content Security Policy
(CSP) deployment, by employing semi-structured inter-
views with coding and drawing tasks, on 12 web devel-
opers. The study found that “knowledge gaps” (e.g., about
CSP related conceptual issues or built-in security features)
are one of the main roadblocks for the adoption of CSP.

Likaj et al. [35] studied the defense techniques related
to CSRF vulnerabilities by analyzing 44 popular web
frameworks, in terms of the supported defense methods, if
they are enabled by default, how much additional coding
is required by developers, and if the documentation is
clear. In addition to identifying several security risks in
the frameworks’ defense mechanisms, they also found
the correct and robust use of the defense mechanisms
require the developers’ “awareness and expertise about
CSRF attacks”. This result reinforces our motivation to
understand developers’ awareness on different types of
web attacks. We also find CSRF to be one of the least
known attack types among the participants (Section 4).

In another study, Braz et al. [19] conducted a task-
based experiment to understand to what extent developers
can detect Improper Input Validation (IIV) practices dur-
ing a code review, on two example IIV attack scenarios:
SQL injection (SQLi) and improper validation of integer
boundaries. They found that participants are seven times
more likely to identify SQLi, as it is a well-known, stereo-
type attack vector with high visibility (e.g., in textbook
examples and in the OWASP Top 10 list). In relation
to this observation, our study also investigates to what
extent web framework documentations (specifically, the
dedicated security chapters) make their built-in security
controls or their coverage of attack scenarios visible to
the developers.

Finally, several studies used Capture The Flag (CTF)
challenges to evaluate the effectiveness of attack-aware
applications, in particular through the use of deceptive
elements (such as honeytokens), in attack detection [18],
[32], [57]. Our CTF experiment instead focuses on the
attack awareness integration aspect from developers’ per-
spective.

3. Experiment I: An Online Survey

The motivation of this online survey was to inves-
tigate whether participants with web development skills
can detect specific indicators of attack attempts, their
familiarity with specific security controls and how they
perceive aspects of input validation that can determine
the effectiveness of validation based detectors. The survey
was developed based on related work in usable security
research on security controls and APIs ([66], [33], [28]) as
well as the OWASP Top 10 proactive controls project [42].
The first section of the survey investigates participants’
expertise with important security controls in application
security, specifically with input validation controls due to
its prevalence in many security incidents as well as being
a first step in the prevention and detection of security
issues. However, self-reporting expertise and familiarity
has its limitations [17] and thus may not be accurate.
For that reason, a scenario-based question has been de-
signed for the second section of the survey, which requires

understanding of the scenario and the ability to apply
the expertise that the participant responded with in the
first section. The scenario was inspired by a theoretic
case study of a rapidly deployed web application doc-
umented in the OWASP AppSensor guide [64]. In this
case study, input validation controls are utilized to detect
and warn the development team about forced browsing to
non-existing endpoints, missing required parameters and
the submission of additional parameters, among others.
Lastly, the third section consists of questions to identify
demographics and developer profiles to ascertain partici-
pant diversity and reveal potential relationships between
participant groups and findings.

A full listing of the questionnaire can be found in
Appendix A.1.

3.1. Ethical Considerations

The survey was conducted after receiving full approval
by Abertay Universitys’ research ethics committee. We
informed participants about the research objectives, what
they will be required to do, the approximate duration of
the survey, and how the data will be retained. Participants
also had to complete a consent form with a privacy
notice on the legal basis of data processing, which is in
accordance with the UK Data Protection Act 2018 and the
EU General Data Protection Regulation (GDPR).

3.2. Pilot Survey

We conducted a pilot survey to receive feedback on
the questions and the estimated time to complete the
questionnaire. Participants of the pilot were recruited via
snowball sampling of personally known contacts. A total
of 10 participants were invited and 7 have completed the
pilot survey. On average, completion of the survey took
about 20 minutes. Feedback received after this pilot helped
identify common issues the participants encountered, and
allowed survey questions to be refactored to its current
form.

3.3. Recruitment

The recruitment process for the final survey focused
on gathering potential participants with experience in
web application development as a primary requirement.
However, reaching out to this specific community and
finding people who would volunteer to participate was
a difficult task. The initial recruitment of participants
took place on social media platforms such as Twitter and
LinkedIn, and some development specific platforms such
as the DEV community and Reddit channels dedicated to
web development topics. Although we wanted to advertise
the survey among other developer communities such as
on Discord or Slack channels, our initial requests for
permission were declined by the moderators, as posting
of surveys is undesired.

Participation in the survey was on a voluntary basis,
and participants did not receive any monetary benefit. In
total, 21 participants completed the survey.

3.4. Participants’ Demographics and Profile

Our survey contains 14 questions (listed as Q7 to
Q20 in Appendix A.1.), in order to understand partici-
pants’ demographics, professional experience and work
environment. Although 21 participants corresponds to a
small sample size, and there might be a potential bias of
gathering the participants from social media platforms; the
demographics of the participants indicate a diverse group
in terms of the industries and job titles (see Appendix
A.2). Participants came from 7 different countries, mostly
from the UK (8 / 21) and Germany (5 / 21). The majority
of the participants had 1-5 years experience (11 / 21) with
web development, often working in organizations with
more than 100 employees (10 / 21), and primarily within
teams of 6-10 people (7 / 21). Most participants (9 / 21)
reported to have a single person dealing with security in
their teams, followed by 1-5 people (8 / 21) and > 10
people (3 / 21). Finally, 7 participants considered them-
selves as security champions (promoting security practices
within their team), while 8 participants do not and 6 did
not know.

3.5. Results and Discussion

0%10%20% 10% 20% 30% 40% 50% 60% 70% 80% 90%100%
Percentage of Participants

Security Logging and
Monitoring

Sensitive Data Protection

Vulnerability-Specific

Authorization

Authentication

Input Validation

Unfamiliar Somewhat familiar Familiar

Figure 1. Participants familiarity with security controls.

3.5.1. Familiarity with Security Controls. The first
question (Q1) asked the participants about their familiarity
(understanding and implementation experience) with a set
of security controls such as input validation, authenti-
cation, authorization, logging, and vulnerability-specific
controls. As shown in Figure 1, participants are the most
familiar with input validation controls (20 / 21), followed
by controls for sensitive data protection (18 / 21) and
authentication (17 / 21) . Participants also indicated a high
familiarity with security logging and monitoring (16 / 21).

We found that the participants were least familiar with
vulnerability-specific security controls such as prepared
statements and context-aware escaping, as exemplified in
the question. Six participants reported to be somewhat
familiar, and 2 participants reported to be unfamiliar with
these controls. Note that, as Q1 includes a description
of what familiarity means1, reported unfamiliarity can be
to some extent understood as participants lacking imple-
mentation experience, even if they have an understanding
of the security control. This does not necessarily mean
that the applications the participants work on do not

1. “Note: Familiarity means that you understand a security control and
have experience implementing it”

have these controls in place, these could be covered by
controls implemented by their colleagues, the libraries or
framework components used in their applications.

Looking further into unfamiliarity, only 3 categories
of controls involved participants that were completely
unfamiliar with controls: Security logging and monitor-
ing (2 / 21), vulnerability-specific controls (2 / 21) and
authorization controls (1 / 21). This reflects to some
extent the OWASP Top 10 [41], [50], which indicates, for
example, Broken Access Control and Insufficient Logging
and Monitoring issues moving up on the list from 2017
to 2021. While Injection has moved down in the list to
the third place, it is still a relevant security threat when
considering that injection attacks, such as XSS and SQLi,
have been consistently within the Top 10 of the CWE
Top 25 weaknesses of the last three years [36], [37], [38]
- all requiring a vulnerability-specific control for effective
prevention such as context-aware escaping and prepared
statements.

3.5.2. Focusing on Input Validation. Questions two to
four further focus on input validation controls. In question
two (Q2), the participants replied that they work on tasks
involving input validation controls Frequently: 7 / 21,
Occasionally: 7 / 21, Rarely: 6 / 21 and Never: 1 / 21.
Based on these results, more than 60% of participants deal
with input validation on a regular basis.

Question three (Q3) asked participants which proper-
ties of an input (e.g., origin, content, structure, seman-
tic) they considered as security-critical to be validated.
The results indicated that a majority of participants find
validating the content (19 / 21) and the structure (19 /
21) of an input as critical. The least security-critical is
considered the semantic validation of an input (12 / 21)
although validating the semantics can be relevant in the
prevention of business logic attacks as a recent incident at
Coinbase demonstrated [21], where a missing validation
check allowed trades to a specific order book using a
mismatched source account. Among all 21 participants,
only 4 considered all of the available properties in the
answer options as security-critical.

For the last question in this section (Q4), we asked if
the participants considered client-side input validation as
optional or essential. The responses reveal that 9 partici-
pants consider it as essential, while 12 participants think
it is optional.

Figure 2. Example HTTP request shown in question five (Q5) with
references to its individual parts.

0 10 20 30 40 50 60 70 80 90 100
Percentage of Participants

HTTP method
HTTP request path

HTTP header
HTTP header value
HTTP request body

Figure 3. Percentage of participants who select parts of the HTTP request
to be modifiable at the client-side.

3.5.3. Perception of Attack Attempts. The last two ques-
tions (Q5 and Q6) of the main part of the survey aimed to
understand which type of anomalies the participants would
consider as attack attempts. Q5 shows an example HTTP
request (Figure 2) and asks which parts of the request
can be modified by the client-side. All participants agreed
that the HTTP request body can be modified, however, the
HTTP header and HTTP method were selected by 76%
(16 / 21) and 81% (17 / 21) of the participants respectively
- see Figure 3. Since all parts of an HTTP request can be
modified by the client-side, it is also important to evaluate
how many of the participants selected all answers. In total,
only 14 participants (67%) selected all answers.

Figure 4. A graphical illustration of the settings form scenario in question
six (Q6).

0%25%50%75% 25% 50% 75% 100%
Percentage of Participants

Country property is missing

Username contains the string "
console.log(document.cookie);"

Password is empty

Additional properties
submitted

Country does not exist

Country was not selected

E-mail address syntax is
invalid

Username property is
duplicated

Not indicative
Not necessarily indicative

I don't know
Partially of indicative

Definitely indicative

Figure 5. Participants selection of the server-side input validation con-
trols which are indicative of blatant attack attempts.

Finally, Q6 provides a scenario to the participants:
Given Figure 4 with an HTML form, a set of client-side
input validation rules, and an example request; we asked
how likely a set of events (given in Figure 5) observed

on the server-side would be indicative of blatant attack
attempts. Note that, all the events listed in the scenario
would either require the HTTP request to be intercepted
or modified (as well, to avoid client-side validation), or
they contain obvious attack payloads.

None of the participants selected all the events as
Definitely indicative of attack attempts in Q6. Only 3 par-
ticipants selected either Partially of indicative or Definitely
indicative for all the events. This result is surprising, as Q6
provides several assisting elements in the scenario descrip-
tion (such as the client-side validation rules, an example
HTTP request with the expected parameters - depicted in
Figure 4), which give hints that the listed events are only
possible if the request is tampered with. Note that, some of
these events might be interpreted by the participants as not
malicious due to the nature of the event (e.g., invalid email
address syntax, empty ’Country’ field). However, even the
event where a suspicious looking JavaScript payload was
received as username, was not considered as an attack
indication by half of the participants.

3.5.4. Discussion. In our survey, developers reported to be
mostly familiar with different types of security controls,
especially with input validation. However, one key finding
is that, around one third of the participants are not aware
that all parts of an HTTP request (including the headers,
verb) can be tampered with. Thus, developers seem to be
more likely to validate the HTTP request body, but might
miss the validation of other fields and related attack vec-
tors. The Apache Struts vulnerability (CVE-2017-5638)
exploited in the high-profile attack against Equifax is a
good example of how important the validation of other
parts of an HTTP request can be, as the attack payload
was submitted as a value of the Content-Type header [22].

As 18 participants reporting utilising a web frame-
work, its influence on the developers’ perception of what
can and should be validated may play an important role.
For example, web frameworks often come with a router
which maps specific URL endpoints to code that handles
requests. Depending on how the framework expects routes
and route handlers to be defined, parts of a HTTP request
such as the expected method may not require explicit
validation - see Listing 1 for a code example where the
HTTP method is part of the route definition. In addition,
the findings by Braz et al. [19] may also apply here by
means of which part of the request the developers mostly
work on. For instance, developers will most likely spend
their time with business logic code which gets executed
as part of a route handler, it is therefore sensible to
hypothesize that the focus is more on the request body,
the primary carrier of payload for the business logic.

1 app.post('/settings', (request, response) => { /* Route handling */ });

Listing 1. Basic route definition for a web application built with the
Express framework [10].

Our concern with Q5 was initially that asking devel-
opers directly what parts of an HTTP request can be
tampered with might be straightforward to answer. In
other words, our expectation and thus the underlying hy-
pothesis was that developers know that the client-side can
submit HTTP requests with arbitrary content. However,
being aware of the small number of participants in the
survey, a third (7 / 21), through their choice of answers,

indicated that the client-side can submit arbitrary content
only to a limited extent. For future investigations, research
hypotheses could revolve around what makes developers
think that, e.g., only the HTTP request body can be
tampered with and what needs to be done to make it
more evident to developers that anything coming from the
client-side cannot be trusted.

Considering Q5 and Q6 together, we find that only 2
participants were able to identify all the correct answers.
These two participants also stated their familiarity with
all security controls in Q1. However, using Fishers’ exact
test, the familiarity with all controls seems not to be
significantly correlated with the ability to understand re-
quest tampering in Q5 and Q6 (p = 0.214). Furthermore,
both participants consider client-side input validation as
optional in Q4. Our expectation was that the participants
who understand request tampering may also see client-
side input validation controls as essential, as they can be
beneficial in intrusion detection ([39], [64]) and form the
essence of the scenario in Q6. To give a concrete example,
assuming the input validation control in Listing 2, having
this input validation control available on both the client-
side and the server-side of a web application can make
request tampering detectable as the control on the client-
side would prevent benign users from submitting a request
without the required properties - and whenever the same
control is triggered on the server-side, it is safe to assume
that the client-side control has been bypassed.

1 const requiredProperties = ['Username','Password','Email','Country'];
2

3 /* Check if requestBody is missing required properties */
4 const requestProperties = Object.keys(requestBody);
5 const missingProperties = requiredProperties.filter(property =>
6 !requestProperties.includes(property)
7);
8

9 if(missingProperties.length > 0)
10 {
11 console.log('Required properties are missing');
12 /* Abort submission/processing of request */
13 }

Listing 2. Input validation control to check if the request body is missing
required properties.

Note that, although scenario based questions can lead
to more concrete results, they also take more time to
respond, extending the duration of the survey. Future work
can focus on more specific scenarios and combine them
with practical experiments in which participants complete
a programming or reviewing task, similar to [24], [19]. As
around 62% of participants reported to find it very useful
to work on side-projects, they may be motivated to par-
ticipate in a practical experiment, solving the challenges
in a development environment familiar to them, thus pro-
viding a more robust dataset to draw conclusions from.
Furthermore, the results in a practical experiment would
also more accurately reflect the developers’ real expertise
and would also address the issues of self-reporting.

4. Experiment II: A CTF Challenge

While the survey measures the developers’ awareness
from a defense perspective (i.e., security controls they
need to keep in mind), it does not really evaluate their
awareness on the the web application attack vectors.

An attack vector might require one or more types of
security controls for a robust defense mechanism. For
example, mitigating XSS attacks involves proper input
validation, but also vulnerability-specific controls such as
CSP or the HttpOnly cookie flag [40], [49]. However,
as observed in [35] and [56], such vulnerability-specific
controls may be difficult to configure or enable, or may re-
quire additional coding from the developers, even though
they have built-in support by the web frameworks or
browsers. Thus, developers’ awareness and expertise of
the attack vector can affect the strength of the defense
mechanisms they can implement.

To this end, this section aims to explore the familiarity
of developers with a variety of web attacks. Employing a
CTF challenge is a useful method for this purpose, as it
requires the developers to understand the inner-workings
of the vulnerability, and to have hands-on experience with
the attack mechanism.

4.1. CTF Challenge Design

The purpose of this CTF challenge is to exhaust the
players’ imagination and to push them to try as many
attacks as possible, on a given web application. To explore
this, we designed a small web application with the follow-
ing goals in mind: First, the application should allow for a
large variety of web-application attacks to be performed.
Second, it should have a minimal set of endpoints, so that
the participants are not distracted by the structure of the
application, and the order by which attacks would be tried
would not depend on the structure.

Overall, our application contains 7 endpoints: a home
page from which most of the attacks can be launched,
and 6 other endpoints accessible from the home page,
to allow different types of attack vectors. For the list of
attack vectors, we took the inspiration from PortSwigger
Labs [54], an online web security training platform. We
ignored the attacks which would be hard to detect from
the server side such as clickjacking. We also ignored the
attacks that are automatically prevented by our application
engine (Node.js), such as HTTP request smuggling, where
the engine drops the request before our server can analyze
it to grant points. The complete list of the attacks, their
mapping to the OWASP Top 10 list, and the CTF imple-
mentation details can be found in the Appendix B.4.

The idea of the challenge was to put the participants
in the position of a penetration tester, and let them define
their own approach to navigate the application and find
attack vectors. The challenge is named “GIVE UP” and
the challenge description states: “This application has
so many vulnerabilities. Exploit them all, and you’ll be
rewarded. But you may as well give up...”.

The application keeps track of the different types of
attack attempts silently, however it is not particularly
vulnerable or exploitable. Thus, the challenge encourages
participants to try out different attack vectors. Once all
the 17 configured attack vectors are tried, the flag of the
challenge is unlocked. To avoid frustration, the application
includes a button to "Give up", where the participant is
asked if they want to end the challenge. Once a participant
gives-up, they would see a message explaining which
attacks were detected and how many more were left. This
allowed for the creation of two datasets: attacks tried

’blindly’ until the first give-up, and attacks tried once the
player knew that the goal was to trigger a maximum of
different attacks.

Moreover, we provided a set of hints within the appli-
cation to motivate attack vectors that require some context
to be tried at all. For example, as SSRF requires the
existence of a second server, we developed the /login
page to be dynamically loaded from a different server
via client-side JavaScript code. The request to load the
page also includes the server URL as a GET parameter.
Other examples are: the path URL parameter of the file
upload page that can be used for path traversal or null-
byte injection, and the /restricted endpoint that replies with
‘403 - local users only’ to hint an HTTP host header
attack.

While the hints aim to signal the possibility of certain
attack points, participants would still need to be familiar
with the attack vector to be able to make use of the hints.
Thus, we do not expect the hints to significantly impact
the participants’ ability to try out the attacks. The list of
the hints, and some screenshots from the CTF application
can be found in Appendix B.2 and B.1.

Participation. The CTF challenge was part of a large
CTF competition at a software company, employed on
an enterprise CTF platform used for internal security
training exercises. The competition took place during the
cybersecurity awareness month (October) in 2021, and
included a variety of challenges (e.g., web, forensics,
cryptography). Participants were security enthusiasts who
voluntarily joined the CTF competition. This might bring
a bias towards a higher attack awareness ratio, compared
to the general population average. Overall, there were 82
participants who carried out at least one type of attack
during the CTF.

4.2. Results

4.2.1. Overall popularity of attacks. For each attack
vector, Table 1 shows the ratio of participants who tried
this attack (i) until they give up for first time, and (ii)
during the total duration of the CTF. (i) can be considered
as a lower-bound, and (ii) can be considered as an upper-
bound on participants’ awareness, as the participants can
take their time to do additional research, and make as
many attempts as they want during the total CTF duration.

We found that XSS, SQLi, forced browsing, and
credential guessing were the attacks that were the most
frequently tried. Note that these attacks are rather easy to
try out, e.g., they do not require intercepting the HTTP
traffic. On the other hand, the attacks that require inter-
cepting and modifying the HTTP request (e.g., Cookie
and verb tampering, client-side bypass, Content-Type and
Host header attacks) had significantly lower percentage
on average (10%), compared to the average of top four
popular attacks (48%)2. This result is also in line with the
survey (Section 3.5.3), showing that, 10 to 20% of partic-
ipants do not think that HTTP method, HTTP header, and
header values can be modified at the client-side; while all
participants know that the request body can be modified.

Moreover, certain attack vectors such as insecure de-
serialization, CSRF and SSRF were tried by very few

2. Applying a 2-proportions Z-test: z-score=-5.3, p-value<.00001, re-
sult is significant at p<.05

participants. These are rather complex attacks, probably
more difficult to understand, and at the same time more
difficult to implement a proper defense against [35], [34].

Attack vector Until first give-up Total CTF duration

Cross-site scripting (XSS) 55% 77%
Credential guessing 50% 72%
SQL injection (SQLi) 43% 69%
Forced browsing 43% 68%
Cookie tampering 21% 34%
Client-side bypass 19% 39%
HTTP verb tampering 15% 40%
OS command injection 11% 35%
XML external entity injection (XXE) 7% 24%
Content-Type header attack 5% 13%
Path traversal 4% 16%
Deserialization attack 2% 5%
Cross-site request forgery (CSRF) 1% 1%
Null byte injection 1% 7%
Host header attack 1% 4%
Server-side template injection - 10%
Server-side request forgery (SSRF) - 8%

TABLE 1. PERCENTAGE OF PARTICIPANTS WHO HAVE TRIED EACH
ATTACK VECTOR.

4.2.2. Clustering participants’ attack behavior. In this
section, we aim to analyze if there are certain groups of
participants with similar attack behavior. We focused on
the attacks carried out until the participant gave-up for
the first time, as this data is more reliable to capture
the inherent knowledge of the participants. We used the
KMeans clustering algorithm [59] where each attack vec-
tor becomes a separate feature and takes the value of 1 if
the participant have tried out this attack, and the value of 0
otherwise. Applying the elbow method [51], we found the
optimal number of cluster to be 4. Appendix B.3 visualizes
the clusters in 2 dimensions, using the t-SNE method [62].
Looking into the clusters manually, we interpret the 4
different profiles:

Cluster 0: 27% of participants who fall into this
cluster tried only a single attack - either SQLi, cookie
tampering, or forced browsing. We do not observe any
attempts of the XSS or credential guessing attacks in this
cluster, although they have the highest overall popularity.

Cluster 1: 28% of participants fell into this cluster,
where the differentiating feature (tried by all participants)
becomes the credential guessing attempts. These partici-
pants tried 2 other attacks on average, mostly XSS (43%)
and client-side bypass (35%).

Cluster 2: This group of participants (21%) tried 6
different attacks on average. Almost all of them tried the
top 4 most popular attacks, and often cookie tampering
and client-side bypass in addition to these. This cluster
also had the largest variety of attacks, including deseri-
alization and Content-Type header attacks, path traversal,
XXE, and OS command injection. However, we still do
not observe certain categories such as CSRF and SSRF.

Cluster 3: 23% of participants fell into this cluster.
Similar to Cluster 1, it has a differentiating feature, that is
the XSS attack carried out by all participants. On average
the participants tried 2 other attacks, mostly SQLi (47%)
and forced browsing (26%). The only participant who tried
the CSRF attack is also in this category.

This analysis provides a preliminary look into different
types of participant profiles in terms of attack awareness.
For instance, Cluster 0 seems to correspond to the least
experienced, while Cluster 2 represents the participants

with the highest attack awareness. Overall, we still observe
that participants’ awareness of the variety of attack vectors
is often quite limited: 79% of participants fail to consider
most of the attacks, even the ones that are rather easy to
try out (e.g., cookie tampering). Future work seeks to in-
vestigate the correlation between the different profiles and
the developers’ security and work experience, which may
show the need for different types of security education.

Limitations. Although we designed the CTF applica-
tion in a way to minimize its influence on the participants’
approach, it is still possible that the CTF setup creates a
bias on the participants (i) to try attacks that are easier or
more obvious to them, (ii) to not consider certain attacks
as they did not see an explicit scenario, or (iii) to press
the give-up button rather early, thinking that they will
be able to replay the challenge. However, there was no
time limitation on completing the challenge or replaying
it, thus they could take as much time to think and search
for different attacks.

Another limitation is about the possible false positives
in the detection of attack attempts. Attacks were detected
with a set of hard-coded rules (Appendix B.4) to search
for known payloads (e.g. collected from PortSwigger or
OWASP cheat sheets). However, especially for the injec-
tion category of attacks it is possible to have collisions,
i.e., the same payload being identified as multiple attacks.
We did our best to minimize this possibility, and as shown
in Section 4.2.2, we can observe different injection attacks
in different clusters. For the future work, it can be a more
reliable approach to replay the traffic to a Web Application
Firewall (WAF) for attack detection. However, WAFs can
also result in false positives.

4.2.3. Web Frameworks’ Security Control Support.
Based on top three most and least frequently attempted at-
tack vectors in the CTF challenge, we have also compared
how common web frameworks make developers aware of
these attacks, and what security controls they suggest. We
choose the frameworks to investigate based on what the
survey participants have reported to use, which is also in
line with the most popular web frameworks reported in
last years’ StackOverflow developer survey [60].

We looked for the dedicated security chapters in the
selected frameworks’ documentations, to see if the rel-
evant attack vectors are covered or referenced, and if
the frameworks come with preventive security controls
built-in. This does not exclude the possibility of security
relevant information being mentioned in other chapters,
however, we think that these should be referenced in a
general security chapter to give developers a more acces-
sible entry point, e.g., for those who might not be familiar
with terminology and abbreviations used in web security.

With the exception of React.js and jQuery, all other
evaluated frameworks have provided a dedicated section
or chapter for security in their documentation. However,
we can already see in Table 2 that these dedicated chapters
do not always mention or reference to built-in security
controls. For those attack vectors that get a mentioning, we
also observe that only vulnerability-specific controls get
recommended such as context-aware escaping, prepared
statements or synchronizer tokens. A more general expla-
nation of web security and how submission of arbitrary
input is a core enabler of the attacks is not provided.

Attack vector Security controls

In
pu

t
V

al
id

at
io

n

A
ut

he
nt

ic
at

io
n

A
ut

ho
ri

za
tio

n

V
ul

ne
ra

bi
lit

y-

Sp
ec

ifi
c

Se
ns

iti
ve

D
at

a
Pr

ot
ec

tio
n

Se
cu

ri
ty

L
og

gi
ng

&
M

on
ito

ri
ng

Cross-site scripting (XSS) - - - AnJS,An,B,F,D,S - -
SQL injection (SQLi) - - - D - -
Credential guessing - - - L,Sy - -

Deserialization attack - - - - - -
Cross-site request forgery (CSRF) - - - A,AnJS,An,D,S,Sy - -
Server-side request forgery (SSRF) - - - - - -

TABLE 2. WEB FRAMEWORKS:
A: ASP.NET[4], [3], [1], [2], ANJS: ANGULAR.JS[9], AN: ANGULAR[8],

B: BLAZOR[5], D: DJANGO[6], E: EXPRESS[13], F: FLASK[14],
L: LARAVEL[11], S: SPRING[7], [12], SY: SYMFONY[15].

For example, a general explanation could have included
a vulnerability description with a practical example and
a reference to the relevant input validation components
of a framework. Basic validation such as ensuring that a
value is an integer can be an important first line of defense
[58] and can establish a defense-in-depth together with the
vulnerability-specific controls, another aspect that was not
covered in the dedicated security pages.

Regarding deserialization attacks and SSRF, we ob-
serve that these do not get mentioned in the dedicated
security chapters. While deserialization attacks can be
mostly avoided through a safer built-in API enforced by
the framework, it is more complicated with SSRF as there
are multiple aspects that need to be validated that are not
straightforward [34].

5. Limitations

Our study contains two experiments with two different
sets of participants. Thus, the results of the experiments
should be interpreted individually. For instance, the CTF
participants are likely to be more knowledgeable and
enthusiastic about security, compared to the survey re-
spondents. The ideal case would be to have the same set
of participants for both studies, however, this would either
require to hire the developers for a lengthy study, or to
work with university students, who may not represent the
developers. Acquiring a representative and voluntary set
of respondents for such a study remains a challenge.

Another limitation is that, our study does not weight
the experiment results according to the participants’ years
of development experience. It is possible that more ex-
perienced developers are more aware of security, and as
mentioned in Section 3.5, a developers’ security awareness
does not necessarily correlate to the security level of
the web applications they develop, as the development
teams may have specific people dealing with security, or
more experienced developers may be supervising the less
experienced ones.

6. Conclusion and Outlook

Our experiments allow us to draw a number of conclu-
sions. First, a diverse group of survey participants working
in various industries have reported their familiarity with
different types of security controls. Especially input val-
idation was selected by most participants of the survey,
however, almost one third of the participants were report-
ing that only certain parts of a HTTP request can be mod-

ified. This includes participants with >1 year experience
in web development and even one participant in a leading
technical position. This indicates a lack of awareness of
a clients’ ability to submit arbitrary input. Although the
CTF experiment was conducted on a different popula-
tion of developers, who are possibly more enthusiastic
about security, the attacks that were the least attempted
would have required to intercept and modify the HTTP
request. Future work could further investigate to what
extent this awareness is lacking, and whether awareness-
raising abstractions of APIs and security controls can be
designed [20].

Second, we observe that Security logging and mon-
itoring was one of the controls that the participants are
the most unfamiliar with. In the future work, a task-
based experiment where the developers augment a pro-
totype application with monitoring and attack detection
points could provide more reliable data on their familiarity
with such controls. This could also help to identify if
application frameworks provide useful artifacts, e.g., event
or exception classes, that can be utilized for logging
and monitoring purposes. This could complement related
research on automatically modelling security incidents
for logging [55] and application intrusion detection ap-
proaches to create attack-aware software applications [61],
[31], [63].

Another insight from the CTF experiment is that SSRF
attack has been attempted the least. SSRF has made
its entry in the most recent OWASP Top 10 list, and
with URL fetching features being common in modern
web applications, web frameworks should provide security
controls for this. However, as highlighted in [34], de-
fending against SSRF programmatically can be non-trivial
as various validations need to be in place with each of
them having their own limitations. Still, frameworks can
be in the best position in order to prevent the developer
from becoming the weakest link, by introducing secure by
default controls [52], [23], [58]. This would complement
our previous suggestion to conduct further studies on the
design of APIs and their abstractions, which is also in line
with recommendations on how to advance usable security
for developers [17].

Finally, while our study sheds light into the lack of
security awareness from defense and offense perspectives,
future studies are required to better understand the corre-
lation between the two: In particular, future work can ex-
plore if an educational approach can make the overlooked
aspects in both experiments more salient to the developers,
and whether the focus should be on training developers
with an offensive or defensive take on application security.
Current work suggests that having a good understanding
of certain attacks helps in building stronger defenses [56].
However, as security is often just a secondary concern
[17], a more promising path may lie in utilizing and im-
proving the resources in the immediate vicinity of a devel-
opers’ work environment. Gorski et al. [27] demonstrates
this on the example of integrating security information
in a non-security API documentation, this makes security
information more visible to developers, and thus supports
the findings by Braz et al. [19]. Tackling the blindspots
in API and framework documentations, such as those in
Table 2, could be therefore a promising area of research.
Frameworks themselves may be another promising subject

of study: especially regarding our findings of the lack of
awareness on certain attacks and HTTP request tampering,
future work can investigate to what extent the development
methodology of current frameworks has an impact on this.

References

[1] “Security | Microsoft Docs,” https://docs.microsoft.com/en-us/
aspnet/web-pages/overview/security/, 2020, Accessed: 31/03/2022.

[2] “Security, Authentication, and Authorization in ASP.NET MVC
| Microsoft Docs,” https://docs.microsoft.com/en-us/aspnet/mvc/
overview/security/, 2020, Accessed: 31/03/2022.

[3] “Security, Authentication, and Authorization in ASP.NET Web API
| Microsoft Docs,” https://docs.microsoft.com/en-us/aspnet/web-
api/overview/security/, 2020, Accessed: 31/03/2022.

[4] “Security, Authentication, and Authorization in ASP.NET Web
Forms | Microsoft Docs,” https://docs.microsoft.com/en-us/aspnet/
web-forms/overview/security/, 2020, Accessed: 23/02/2022.

[5] “ASP.NET Core Blazor authentication and authorization | Mi-
crosoft Docs,” https://docs.microsoft.com/en-us/aspnet/core/blazor/
security/?view=aspnetcore-6.0, 2022, Accessed: 23/02/2022.

[6] “Security in Django | Django documentation | Django,” https:
//docs.djangoproject.com/en/4.0/topics/security/, 2022, Accessed:
23/02/2022.

[7] “Web on Servlet Stack,” https://docs.spring.io/spring-framework/
docs/current/reference/html/web.html#mvc-web-security, 2022,
Accessed: 23/02/2022.

[8] “Angular - Security,” https://angular.io/guide/security, n.d., Ac-
cessed: 23/02/2022.

[9] “AngularJS: Developer Guide: Security,” https://code.angularjs.org/
snapshot/docs/guide/security, n.d., Accessed: 23/02/2022.

[10] “Express basic routing,” https://expressjs.com/en/starter/basic-
routing.html, n.d., Accessed: 31/03/2022.

[11] “Installation - Laravel - The PHP Framework For Web Artisans,”
https://laravel.com/docs/9.x/, n.d., Accessed: 23/02/2022.

[12] “Protection Against Exploits :: Spring Security,” https://docs.
spring.io/spring-security/reference/features/exploits/index.html,
n.d., Accessed: 23/02/2022.

[13] “Security Best Practices for Express in Production,”
https://expressjs.com/en/advanced/best-practice-security.html#
production-best-practices-security, n.d., Accessed: 23/02/2022.

[14] “Security Considerations - Flask Documentation (2.0.x),”
https://flask.palletsprojects.com/en/2.0.x/security/, n.d., Accessed:
23/02/2022.

[15] “Security (Symfony Docs),” https://symfony.com/doc/current/
security.html, n.d., Accessed: 23/02/2022.

[16] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and
C. Stransky, “You Get Where You’re Looking for: The Impact of
Information Sources on Code Security,” in 2016 IEEE Symposium
on Security and Privacy (SP). IEEE, 2016, pp. 289–305.

[17] Y. Acar, S. Fahl, and M. L. Mazurek, “You are Not Your Devel-
oper, Either: A Research Agenda for Usable Security and Privacy
Research Beyond End Users,” in 2016 IEEE Cybersecurity Devel-
opment (SecDev). IEEE, 2016, pp. 3–8.

[18] F. Araujo, M. Shapouri, S. Pandey, and K. Hamlen, “Experiences
with Honey-Patching in Active Cyber Security Education,” in 8th
Workshop on Cyber Security Experimentation and Test (CSET 15),
2015.

[19] L. Braz, E. Fregnan, G. Çalikli, and A. Bacchelli, “Why Don’t
Developers Detect Improper Input Validation?’; DROP TABLE
Papers;–,” in 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). IEEE, 2021, pp. 499–511.

[20] P. D. Chowdhury, J. Hallett, N. Patnaik, M. Tahaei, and A. Rashid,
“Developers Are Neither Enemies Nor Users: They Are Collabo-
rators,” in 2021 IEEE Secure Development Conference (SecDev).
IEEE, 2021, pp. 47–55.

https://docs.microsoft.com/en-us/aspnet/web-pages/overview/security/
https://docs.microsoft.com/en-us/aspnet/web-pages/overview/security/
https://docs.microsoft.com/en-us/aspnet/mvc/overview/security/
https://docs.microsoft.com/en-us/aspnet/mvc/overview/security/
https://docs.microsoft.com/en-us/aspnet/web-api/overview/security/
https://docs.microsoft.com/en-us/aspnet/web-api/overview/security/
https://docs.microsoft.com/en-us/aspnet/web-forms/overview/security/
https://docs.microsoft.com/en-us/aspnet/web-forms/overview/security/
https://docs.microsoft.com/en-us/aspnet/core/blazor/security/?view=aspnetcore-6.0
https://docs.microsoft.com/en-us/aspnet/core/blazor/security/?view=aspnetcore-6.0
https://docs.djangoproject.com/en/4.0/topics/security/
https://docs.djangoproject.com/en/4.0/topics/security/
https://docs.spring.io/spring-framework/docs/current/reference/html/web.html#mvc-web-security
https://docs.spring.io/spring-framework/docs/current/reference/html/web.html#mvc-web-security
https://angular.io/guide/security
https://code.angularjs.org/snapshot/docs/guide/security
https://code.angularjs.org/snapshot/docs/guide/security
https://expressjs.com/en/starter/basic-routing.html
https://expressjs.com/en/starter/basic-routing.html
https://laravel.com/docs/9.x/
https://docs.spring.io/spring-security/reference/features/exploits/index.html
https://docs.spring.io/spring-security/reference/features/exploits/index.html
https://expressjs.com/en/advanced/best-practice-security.html#production-best-practices-security
https://expressjs.com/en/advanced/best-practice-security.html#production-best-practices-security
https://flask.palletsprojects.com/en/2.0.x/security/
https://symfony.com/doc/current/security.html
https://symfony.com/doc/current/security.html

[21] Coinbase, “Retrospective: Recent Coinbase Bug Bounty
Award | by Coinbase | Feb, 2022 | The Coinbase Blog,”
https://blog.coinbase.com/retrospective-recent-coinbase-bug-
bounty-award-9f127e04f060, 2022, Accessed: 20/02/2022.

[22] N. V. Database, “NVD - CVE-2017-5638,” https://nvd.nist.gov/
vuln/detail/CVE-2017-5638, 2017, Accessed: 22/02/2022.

[23] M. Finifter and D. Wagner, “Exploring the Relationship Between
Web Application Development Tools and Security,” in 2nd USENIX
Conference on Web Application Development (WebApps 11), 2011.

[24] P. L. Gorski, Y. Acar, L. Lo Iacono, and S. Fahl, Listen to
Developers! A Participatory Design Study on Security Warnings
for Cryptographic APIs, 2020, pp. 1–13.

[25] P. L. Gorski, L. L. Iacono, D. Wermke, C. Stransky, S. Möller,
Y. Acar, and S. Fahl, “Developers Deserve Security Warnings, Too:
On the Effect of Integrated Security Advice on Cryptographic API
Misuse,” in Fourteenth Symposium on Usable Privacy and Security
(SOUPS 2018), 2018, pp. 265–281.

[26] P. L. Gorski, L. L. Iacono, S. Wiefling, and S. Möller, “Warn
if Secure or How to Deal with Security by Default in Software
Development?” in HAISA, 2018, pp. 170–190.

[27] P. L. Gorski, S. Moller, S. Wiefling, and L. L. Iacono, “" I
just looked for the solution!" - On Integrating Security-Relevant
Information in Non-Security API Documentation to Support Secure
Coding Practices,” IEEE Transactions on Software Engineering,
2021.

[28] M. Green and M. Smith, “Developers are Not the Enemy!: The
Need for Usable Security APIs,” IEEE Security & Privacy, vol. 14,
no. 5, pp. 40–46, 2016.

[29] HackerOne, “Organizations Paid Hackers $23.5 Million
for These 10 Vulnerabilities in One Year | HackerOne,”
https://www.hackerone.com/press-release/organizations-paid-
hackers-235-million-these-10-vulnerabilities-one-year-4, 2020,
Accessed: 21/02/2022.

[30] ——, “The Rise of IDOR | HackerOne,” https://www.hackerone.
com/company-news/rise-idor, 2021, Accessed: 21/02/2022.

[31] C. C. Hall, L. A. Shepherd, and N. Coull, “BlackWatch: Increas-
ing Attack Awareness within Web Applications,” Future Internet,
vol. 11, no. 2, p. 44, 2019.

[32] X. Han, N. Kheir, and D. Balzarotti, “Evaluation of Deception-
Based Web Attacks Detection,” in Proceedings of the 2017 Work-
shop on Moving Target Defense, 2017, pp. 65–73.

[33] L. L. Iacono and P. L. Gorski, “I Do and I Understand. Not Yet
True for Security APIs. So Sad,” in European Workshop on Usable
Security, vol. 4, 2017.

[34] B. Jabiyev, O. Mirzaei, A. Kharraz, and E. Kirda, “Preventing
Server-Side Request Forgery Attacks,” in Proceedings of the 36th
Annual ACM Symposium on Applied Computing, 2021, pp. 1626–
1635.

[35] X. Likaj, S. Khodayari, and G. Pellegrino, “Where We Stand (or
Fall): An Analysis of CSRF Defenses in Web Frameworks,” in
24th International Symposium on Research in Attacks, Intrusions
and Defenses, 2021, pp. 370–385.

[36] MITRE, “CWE - 2019 CWE Top 25 Most Dangerous Software
Weaknesses,” https://cwe.mitre.org/top25/archive/2019/2019_cwe_
top25.html, 2019, Accessed: 08/02/2022.

[37] ——, “CWE - 2020 CWE Top 25 Most Dangerous Software
Weaknesses,” https://cwe.mitre.org/top25/archive/2020/2020_cwe_
top25.html, 2020, Accessed: 08/02/2022.

[38] ——, “CWE - 2021 CWE Top 25 Most Dangerous Software
Weaknesses,” https://cwe.mitre.org/top25/archive/2021/2021_cwe_
top25.html, 2021, Accessed: 08/02/2022.

[39] ——, “CWE - CWE-20: Improper Input Validation (4.6),”
https://cwe.mitre.org/data/definitions/20.html, 2021, Accessed:
08/02/2022.

[40] MITRE, “CWE - CWE-79: Improper Neutralization of Input Dur-
ing Web Page Generation (’Cross-site Scripting’),” https://cwe.
mitre.org/data/definitions/79.html, 2021, Accessed: 23/02/2022.

[41] OWASP, “OWASP Top Ten 2017 | Table of Contents | OWASP
Foundation,” https://owasp.org/www-project-top-ten/2017/, 2017,
Accessed: 15/02/2022.

[42] ——, “OWASP Proactive Controls | OWASP Foundation,”
https://owasp.org/www-project-proactive-controls/, 2018,
Accessed: 29/03/2022.

[43] ——, “A01:2021 – Broken Access Control,” https://owasp.
org/Top10/A01_2021-Broken_Access_Control/, 2021, Accessed:
24/02/2022.

[44] ——, “A03:2021 – Injection,” https://owasp.org/Top10/A03_2021-
Injection/, 2021, Accessed: 24/02/2022.

[45] ——, “A05:2021 – Security Misconfiguration,” https://owasp.
org/Top10/A05_2021-Security_Misconfiguration/, 2021, Accessed:
24/02/2022.

[46] ——, “A07:2021 – Identification and Authentication
Failures,” https://owasp.org/Top10/A07_2021-Identification_
and_Authentication_Failures/, 2021, Accessed: 24/02/2022.

[47] ——, “A08:2021 – Software and Data Integrity Failures,”
https://owasp.org/Top10/A08_2021-Software_and_Data_Integrity_
Failures/, 2021, Accessed: 24/02/2022.

[48] ——, “A10:2021 – Server-Side Request Forgery (SSRF),”
https://owasp.org/Top10/A10_2021-Server-Side_Request_
Forgery_%28SSRF%29/, 2021, Accessed: 24/02/2022.

[49] OWASP, “Cross-Site Scripting Prevention - OWASP Cheat Sheet
Series,” https://cheatsheetseries.owasp.org/cheatsheets/Cross_
Site_Scripting_Prevention_Cheat_Sheet.html, 2021, Accessed:
23/02/2022.

[50] OWASP, “OWASP Top 10:2021,” https://owasp.org/Top10/, 2021,
Accessed: 15/02/2022.

[51] P. Vatsal , “Explaining and Implementing kMeans Algorithm
in Python,” https://towardsdatascience.com/k-means-explained-
10349949bd10, 2021, Accessed: 23/02/2022.

[52] K. Peguero, N. Zhang, and X. Cheng, “An Empirical Study of
the Framework Impact on the Security of JavaScript Web Appli-
cations,” in Companion Proceedings of the The Web Conference
2018, 2018, pp. 753–758.

[53] PortSwigger, “Cross-site scripting (XSS) cheat sheet,” https:
//portswigger.net/web-security/cross-site-scripting/cheat-sheet,
2022, Accessed: 31/03/2022.

[54] ——, “Web Security Academy - All labs,” https://portswigger.net/
web-security/all-labs, 2022, Accessed: 07/02/2022.

[55] F. Rivera-Ortiz and L. Pasquale, “Automated Modelling of Security
Incidents to represent Logging Requirements in Software Systems,”
in Proceedings of the 15th International Conference on Availability,
Reliability and Security, 2020, pp. 1–8.

[56] S. Roth, L. Gröber, M. Backes, K. Krombholz, and B. Stock, “12
Angry Developers-A Qualitative Study on Developers’ Struggles
with CSP,” in Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security, 2021, pp. 3085–3103.

[57] M. Sahin, C. Hebert, and A. S. De Oliveira, “Lessons Learned from
SunDEW: A Self Defense Environment for Web Applications,”
in Proceedings of the 2020 Measurements, Attacks, and Defenses
for the Web (MADWeb) Workshop in the Network and Distributed
System Security Symposium (NDSS), 2020.

[58] T. Scholte, W. Robertson, D. Balzarotti, and E. Kirda, “An Empir-
ical Analysis of Input Validation Mechanisms in Web Applications
and Languages,” in Proceedings of the 27th Annual ACM Sympo-
sium on Applied Computing, 2012, pp. 1419–1426.

[59] Scikit-learn developers , “KMeans clustering,” https://scikit-
learn.org/stable/modules/generated/sklearn.cluster.KMeans.html,
2022, Accessed: 23/02/2022.

[60] StackOverflow, “Stack Overflow Developer Survey 2021,”
https://insights.stackoverflow.com/survey/2021#section-most-
popular-technologies-web-frameworks, 2021, Accessed:
20/02/2022.

[61] T. Ünlü, L. A. Shepherd, N. Coull, and C. McLean, “A Taxonomy
of Approaches for Integrating Attack Awareness in Applications,”
in 2020 International Conference on Cyber Security and Protection
of Digital Services (Cyber Security). IEEE, 2020, pp. 1–4.

https://blog.coinbase.com/retrospective-recent-coinbase-bug-bounty-award-9f127e04f060
https://blog.coinbase.com/retrospective-recent-coinbase-bug-bounty-award-9f127e04f060
https://nvd.nist. gov/vuln/detail/CVE-2017-5638
https://nvd.nist. gov/vuln/detail/CVE-2017-5638
https://www.hackerone.com/press-release/organizations-paid-hackers-235-million-these-10-vulnerabilities-one-year-4
https://www.hackerone.com/press-release/organizations-paid-hackers-235-million-these-10-vulnerabilities-one-year-4
https://www.hackerone.com/company-news/rise-idor
https://www.hackerone.com/company-news/rise-idor
https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html
https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html
https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html
https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html
https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/79.html
https://owasp.org/www-project-top-ten/2017/
https://owasp.org/www-project-proactive-controls/
https://owasp.org/Top10/A01_2021-Broken_Access_Control/
https://owasp.org/Top10/A01_2021-Broken_Access_Control/
https://owasp.org/Top10/A03_2021-Injection/
https://owasp.org/Top10/A03_2021-Injection/
https://owasp.org/Top10/A05_2021-Security_Misconfiguration/
https://owasp.org/Top10/A05_2021-Security_Misconfiguration/
https://owasp.org/Top10/A07_2021-Identification_and_Authentication_Failures/
https://owasp.org/Top10/A07_2021-Identification_and_Authentication_Failures/
https://owasp.org/Top10/A08_2021-Software_and_Data_Integrity_Failures/
https://owasp.org/Top10/A08_2021-Software_and_Data_Integrity_Failures/
https://owasp.org/Top10/A10_2021-Server-Side_Request_Forgery_%28SSRF%29/
https://owasp.org/Top10/A10_2021-Server-Side_Request_Forgery_%28SSRF%29/
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://owasp.org/Top10/
https://towardsdatascience.com/k-means-explained-10349949bd10
https://towardsdatascience.com/k-means-explained-10349949bd10
https://portswigger.net/web-security/cross-site-scripting/cheat-sheet
https://portswigger.net/web-security/cross-site-scripting/cheat-sheet
https://portswigger.net/web-security/all-labs
https://portswigger.net/web-security/all-labs
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://insights.stackoverflow.com/survey/2021#section-most-popular-technologies-web-frameworks
https://insights.stackoverflow.com/survey/2021#section-most-popular-technologies-web-frameworks

[62] L. van der Maaten and G. Hinton, “Viualizing data using t-sne,”
Journal of Machine Learning Research, vol. 9, pp. 2579–2605, 11
2008.

[63] C. Watson, M. Coates, J. Melton, and D. Groves, “Creating Attack-
Aware Software Applications with Real-Time Defenses,” CrossTalk
The Journal of Defense Software Engineering, vol. 24, no. 5, 2011.

[64] C. Watson, D. Groves, and J. Melton, “OWASP AppSensor
Guide - Application-Specific Real Time Attack Detection & Re-
sponse - Version 2.0,” https://owasp.org/www-pdf-archive/Owasp-
appsensor-guide-v2.pdf, 2015, Accessed: 08/02/2022.

[65] C. Wijayarathna and N. A. G. Arachchilage, “Fighting Against
XSS Attacks: A Usability Evaluation of OWASP ESAPI Output
Encoding,” in Proceedings of the 52nd Hawaii International Con-
ference on System Sciences (HICSS), 2019.

[66] C. Wijayarathna, N. A. G. Arachchilage, and J. Slay, “A Generic
Cognitive Dimensions Questionnaire to Evaluate the Usability of
Security APIs,” in International Conference on Human Aspects
of Information Security, Privacy, and Trust. Springer, 2017, pp.
160–173.

Appendix A.
Questionnaire-based Online Survey

A.1. Survey Questions

• Q1: Please select how familiar you are with the
following security controls - Note: Familiarity means
that you understand a security control and have
experience in implementing it (Likert: Unfamiliar,
Somewhat familiar, Familiar)
- Input validation controls (e.g. Is the provided input
a number? Is the provided input whitelisted?)
- Authentication controls (e.g. Did User A provide
correct credentials?)
- Authorization controls (e.g. Is User A allowed to
do action X?)
- Security controls that prevent specific types of vul-
nerabilities (e.g. Context-Aware Escaping, Prepared
Statements)
- Security controls that protect sensitive data (e.g.
Applying Encryption, Preventing Storage of Secret
Keys)
- Security controls that log security events (e.g. Log
multiple failed login attempts)

• Q2: Please select how often you work on tasks that
involve the development of input validation controls
- Note: Both client-side and server-side input vali-
dation (Single Choice: Never, Rarely, Occasionally,
Frequently)

• Q3: Please select which of the following types of
validations you consider as security-critical (Multiple
Choice: Origin - Who sent the input?, Size - Is
the input size reasonable?, Content - Does the input
contain the right values and encoding?, Structure -
Is the input in the correct format?, Semantics - Does
the input make sense in the current context?)

• Q4: From a security perspective, do you consider
client-side input validation as optional or essential?
(Single Choice: Optional, Essential)

• Q5: Please select which of the parts of the HTTP
request in the figure below can be modified by the
client-side (Multiple Choice: 1. The HTTP method,
2. The HTTP header, 3. The HTTP request path, 4.
The value of a HTTP header, 5. The HTTP request
body)

• Q6: You are given the following figure of a settings
page below. Please select whether the following in-
put validation controls on the server-side would be
indicative for blatant attack attempts (Likert: Not
indicative, Not necessarily indicative, I don’t know,
Partially of indicative, Definitely indicative)

- Username property is duplicated
- E-Mail address syntax is invalid
- Country was not selected
- Country does not exist
- Additional properties submitted
- Password is empty
- Username contains the string "con-
sole.log(document.cookie);"
- Country property is missing

• Q7: Please describe your current job title (Short-
answer text)

• Q8: Please select your current age (Single choice: 18
- 24, 25 - 39, 40 - 60, > 60)

• Q9: Please select your current country of residence
(Drop-down)

• Q10: Please select your highest level of educational
attainment (Drop-down: Doctoral degree (Ph.D.,
Ed.D., etc.), Master’s degree (M.A., M.S., M.Eng.,
MBA, etc.), Bachelor’s degree (B.A., B.S., B.Eng.,
etc.), Associate degree (A.A., A.S., etc.), Professional
degree (JD, MD, etc.), Secondary school (e.g. Ameri-
can High School, German Realschule or Gymnasium,
etc.), Some college/university study without earning
a degree, No formal education)

• Q11: Please select the programming and scripting
languages of the web application(s) you are working
on - Note: Use comma’s (",") to separate multiple
values when using the "Other..." option (Multiple

https://owasp.org/www-pdf-archive/Owasp-appsensor-guide-v2.pdf
https://owasp.org/www-pdf-archive/Owasp-appsensor-guide-v2.pdf

Choice: C#, Go, Java, JavaScript, Perl, PHP, Python,
Ruby, TypeScript, WebAssembly, Other...)

• Q12: Please select the web frameworks of the web
application(s) you are working on - Note: Use
comma’s (",") to separate multiple values when using
the "Other..." option - Do not select any option if
you are not making use of a web framework (Multi-
ple Choice: Angular, Angular.js, ASP.NET, Django,
Express, Flask, jQuery, Laravel, React.js, Ruby on
Rails, Spring, Symfony, Vue.js, Other...)

• Q13: Please select the development environments
or code editors that you are using for web appli-
cation development - Note: Use comma’s (",") to
separate multiple values when using the "Other..."
option (Multiple Choice: Atom, Coda, Eclipse, In-
telliJ, Komodo, Light Table, NetBeans, PHPStorm,
PyCharm, RubyMine, Sublime Text, Visual Studio,
Visual Studio Code, Zend, Other...)

• Q14: Please select the years of experience you have
in web application development (Single Choice: < 1
Year, 1 - 5 Years, 6 - 10 Years, > 10 Years)

• Q15: Please select the size of the development team
you work with (Single Choice: 1 Person, 1 - 5 People,
6 - 10 People, > 10 People)

• Q16: Please select how many in your development
team are dealing with security (Single Choice: 1
Person, 1 - 5 People, 6 - 10 People, > 10 People)

• Q17: Please select the size of the organization you
work for (Single Choice: 1 Employee, 1 - 10 Em-
ployees, 11 - 20 Employees, 21 - 100 Employees,
> 100 Employees)

• Q18: Please select the type of industry you work
for (Drop-down: Cloud-based Solutions or Services,
Consulting, Data and Analytics, Education and Train-
ing, Energy or Utilities, Financial and Banking, Gov-
ernment or Public Administration, Health Care or
Social Services, Information Technology, Internet,
Manufacturing, Marketing, Media, Publishing Ad-
vertising or Entertainment, Nonprofit, Real Estate,
Research – Academic or Scientific, Retail or E-
Commerce, Security, Software as a Service (SaaS)
Development, Software Development, Telecommu-
nications, Transportation, Travel, Web Development
and Design)

• Q19: Please select how useful you think the follow-
ing activities are to learning new skills, technologies,
programming languages or frameworks (Likert: Very
useless, Somewhat useless, I don’t know, Somewhat
useful, Very useful)
- Reading books
- Reading online articles (e.g. Medium, DEV Com-
munity, Hacker Noon)
- Reading in online communities (e.g. Twitter, Red-
dit, Hacker News, StackOverflow/StackExchange)
- Participating in online communities (e.g. Twit-
ter, Reddit, Hacker News, StackOverflow/StackEx-
change)
- Watching online videos (e.g. YouTube, Twitch)
- Taking courses (e.g. Coursera, Udemy, University
Courses)
- Working on side projects
- Contributing to open source projects
- Talking with developers I know/work with

- Attending events (e.g. Meetups, Conferences,
Workshops, Trainings)

• Q20: Would you consider yourself as a "security
champion"? - A person who enables and promotes
security practices within a team and is often the go-to
person for security-related inquiries (Single Choice:
Yes, I don’t know, No)

• If you want to give us feedback on this survey,
please use the text field below. Your feedback is very
valuable to us and will help us in improving our
future research activities (Short-answer text)

• As part of my PhD, I will conduct further research
activities on the topic of attack-aware web applica-
tions. If you are keen to take part in them, please
use the text field below to enter your E-mail address
(Short-answer text)

A.2. Participant Demographics

Job title Count

Developer 1
Senior developer 1
Software Developer / IT-Administration 1
CTO 1
Director of Front End Development 1
Machine Learning Engineer 1
Webmaster 1
Full stack software developer 1
Software Engineer 1
Web Developer 2
CTI Analyst + R&D 1
Software Developer 1
Student 1
Python Developer 1
Security Analyst 1
Security Consultant 1
None 4

TABLE 3. JOB TITLES REPORTED BY THE SURVEY PARTICIPANTS.

Country Percentage

United Kingdom 38.10%
Germany 23.81%
United States 19.05%
Canada 4.76%
Finland 4.76%
Poland 4.76%
Chile 4.76%

TABLE 4. COUNTRIES THE PARTICIPANTS COME FROM.

Industry Percentage

Information Technology 27.78%
Software Development 16.67%
Financial and Banking 16.67%
Cloud-based Solutions or Services 5.56%
Security 5.56%
Internet 5.56%
Media, Publishing Advertising or Entertainment 5.56%
Research - Academic or Scientific 5.56%
Web Development and Design 5.56%
Energy or Utilities 5.56%

TABLE 5. INDUSTRIES THE PARTICIPANTS WORK IN.

Appendix B.
Details related to the CTF challenge

B.1. List of the hints provided in the CTF chal-
lenge

• The home page displayed an SVG picture as a hint to
try an XXE attack.

• The /login page was added as a separate page, loading
via an AJAX call. This was done as a hint to try SSRF
and path traversal.

• The /restricted endpoint replies ’403 - local users only’
to hint an HTTP Host header attack.

• The /README route was added as a hint to try SSRF
and Server-side template injection.

• The /status and /debug routes were added as a hint to
try CSRF.

• The /feedback form was added to enable XSS attack.

B.2. Screenshots from the CTF challenge

Figure 6. Home page of the "Give Up" CTF application.

Figure 7. Login page of the "Give Up" CTF application.

B.3. Clustering of participants by attack types

40 30 20 10 0 10 20 30 40

40

30

20

10

0

10

20

30

40 0Clusters
0
1
2
3

Figure 8. Clustering of participants by the attacks tried, using t-SNE
method for dimensionality reduction.

B.4. Complete list of CTF attacks and implementation details

OWASP Attack vector Attack detection in the CTF challenge

A01 - Broken Forced browsing (direct request) Application receives a request for an invalid endpoint.
Access Control [43] Path traversal URL parameter contains a .. sequence.

HTTP verb tampering Application received a request for a valid endpoint, but with an invalid verb.
Cross-site request forgery (CSRF) Payload received through the /feedback form tries to turn the debug mode to true.

A03 - Injection [44] SQL injection (SQLi) Request body or URL parameters contain an unescaped quote.
Cross-site scripting (XSS) Request body or URL parameters contain something akin to XSS payload as described in PortSwigger cheatsheet [53].
OS command injection Request body or URL parameters contain unescaped os-related characters such as: & | ; 0x `
Server-side template injection Request body or URL parameters contain curly brackets.
Null byte injection Request body or URL parameters contain a null-byte.

A05 - Security XML external entity injection (XXE) The uploaded image (SVG file) contains <!Entity.
misconfiguration [45] HTTP host header attack Request to /restricted endpoint sets the host header to localhost.

A07 - Identification and Credential guessing Credentials submitted to the /login form.
authentication failures [46] Cookie tampering Value of the adm cookie is changed from base64(false) to base64(true).

A08 - Software and data
integrity failures [47] Deserialization attack Value of session cookie, constructed as a serialized Java object with a

content of authenticated=false, was set to authenticated=true.
Content-Type header attack Content-Type header is modified from its expected value.
Client-side bypass The read-only /login POST parameter system is modified from its default value PROD.

A10 - SSRF [48] Server-side request forgery (SSRF) Any request that modifies the sysloc parameter which loads the /login page content via AJAX call.

TABLE 6. LIST OF ATTACKS, THEIR OWASP CATEGORY, AND HOW THEY ARE IMPLEMENTED IN THE CHALLENGE.

	Introduction
	Related Work
	Experiment I: An Online Survey
	Ethical Considerations
	Pilot Survey
	Recruitment
	Participants' Demographics and Profile
	Results and Discussion
	Familiarity with Security Controls
	Focusing on Input Validation
	Perception of Attack Attempts
	Discussion

	Experiment II: A CTF Challenge
	CTF Challenge Design
	Results
	Overall popularity of attacks
	Clustering participants' attack behavior
	Web Frameworks' Security Control Support

	Limitations
	Conclusion and Outlook
	References
	Appendix A: Questionnaire-based Online Survey
	Survey Questions
	Participant Demographics

	Appendix B: Details related to the CTF challenge
	List of the hints provided in the CTF challenge
	Screenshots from the CTF challenge
	Clustering of participants by attack types
	Complete list of CTF attacks and implementation details

