
Towards Improving the Deprecation Process of Web
Features through Progressive Web Security

Tom Van Goethem
imec-DistriNet, KU Leuven

tom.vangoethem@kuleuven.be

Wouter Joosen
imec-DistriNet, KU Leuven
wouter.joosen@kuleuven.be

Abstract—To keep up with the continuous modernization of
web applications and to facilitate their development, a large
number of new features are introduced to the web platform every
year. Although new web features typically undergo a security
review, issues affecting the privacy and security of users could still
surface at a later stage, requiring the deprecation and removal
of affected APIs. Furthermore, as the web evolves, so do the
expectations in terms of security and privacy, and legacy features
might need to be replaced with improved alternatives. Currently,
this process of deprecating and removing features is an ad-hoc
effort that is largely uncoordinated between the different browser
vendors. This causes a discrepancy in terms of compatibility
and could eventually lead to the deterrence of the removal of
an API, prolonging potential security threats. In this paper we
propose a progressive security mechanism that aims to facilitate
and standardize the deprecation and removal of features that
pose a risk to users’ security, and the introduction of features
that aim to provide additional security guarantees.

I. INTRODUCTION

Every year several hundreds of new features are added to
the web platform, each of which go through a standardization
track before an implementation lands in the browser. This
ensures that when a developer designs a website using stan-
dardized features, it will be compatible in all browsers. When
a feature has gone through the standardization track, which
typically also includes a review of the security implications,
an implementation in the various browsers typically follows.
At this point, web developers can start using the new features,
and will typically rely on a continued support of these features.
However, in practice, it may happen that features need to be
removed from the web platform. There are several reasons
why this may occur. For instance, a certain feature may
not achieve the adoption rate that was originally intended,
making it infeasible for browser vendors to continue support
and development of an underused API. Another, more severe
scenario is that a feature has been found to either introduce
security or privacy threats, or blocks the design of a more
secure web. In this case the feature may pose a threat to web
users and should thus be removed as fast as possible.

In contrast to the introduction of new features, the dep-
recation and removal of features in the current state of the
web is done in an ad-hoc and mostly uncoordinated fashion.
This provides web developers with an unclear overview of the
deprecation status of features as this may differ depending on
the browser. Furthermore, the incoherent timeline of feature
removal may cause compatibility issues causing a website to

function in one browser but not an other one that removed
support for a feature with a nefarious security impact. A
possible side-effect of this, is that this may trigger users to
switch to a browser that retained support for a deprecated
feature, despite the additional security risk this poses. This
in turn could deter browser vendors to be the first to remove
a feature, resulting in an extended timeframe during which a
feature with nefarious security implication remains available
in the browser.

In an effort to improve the process of deprecation and
removal of features, in particular those that have an impact
on the security or privacy of users or websites, we propose
the progressive security mechanism. This mechanism aims to
provide a streamlined and standardized approach to remove
features from the web platform and provide a unified way
for web developers to configure their applications. The design
of the mechanism is based on incrementing versions, where
each version gradually improves the security of the browser.
By periodically increasing the minimally acceptable version,
the provided security guarantees progressively advance. Our
proposed mechanism is based on a qualitative analysis of past
and ongoing deprecation and removal efforts, as well as the
enabling of security mechanisms by default. We show that
this mechanism provides a similar level of granularity for
temporarily opting in to deprecated features, or opting out
to new security mechanisms, compared to the current ad-hoc
removal approaches.

Through this paper we intend to initiate a discussion on
how the deprecation and removal process of features with an
adverse security impact can be improved, and consider the
proposed progressive security mechanism as an initial step in
that direction.

In summary, we make the following contributions:

• We perform a quantitative analysis on the deprecation
status of browser features, and find that approximately
10% of features are marked as deprecated, of which only
a small fraction (4.3-16.8%) have been removed from the
web platform.

• We analyze three ways in which features affect the
improvement of security on the web: certain features
may be used to launch cross-site attacks, improving the
architecture of the browser might be impeded by requiring
support of legacy features, and security mechanisms can

2018-01
2018-07

2019-01
2019-07

2020-01
2020-07

2021-01
2021-07

2022-01
0

2000
4000
6000
8000

10000
12000

Nu
m

be
r o

f f
ea

tu
re

s

Fig. 1. Number of web platform features tracked by MDN over time.

be enabled by default.
• We propose a progressive security mechanism that aims

to standardize the deprecation and removal of features
with a negative security impact, and support the intro-
duction of security mechanisms.

II. WEB PLATFORM FEATURES

A. Overview

Ever since the inception of the first web browser, new
features have continuously been added to the web platform.
These new technologies allow developers to create performant
and highly interactive web applications that are typically made
up out of HTML, CSS and JavaScript. Some of the major
evolutions in the browser include the interplay with periph-
erals, e.g. camera, microphone, accelerometer and gyroscope,
access to a virtual or augmented reality through WebXR, native
execution speed of binary code using Web Assembly, and
background processes – referred to as service workers – that
allow a website to be accessed even when the user is offline.
At the time of writing, a total of 527 browser mechanisms are
listed by the CanIUse project [1].

Each browser mechanism can have several features: for
instance, service workers can be used to serve content from the
cache but can intercept push messages from the server. This
more detailed information is tracked by the Mozilla Developer
Network (MDN), which captures detailed information about
the different features, in the form of Web APIs, CSS features,
HTTP headers, HTML element, JavaScript language features,
and XML-based markup mechanisms, namely MathML and
SVG. In Figure 1 we show the evolution of the number
of features that are tracked by MDN over time, according
to the publicly available data on the browser compatibility
repository [2]. Note that this data is incomplete, and that
efforts have been made since 2018 to capture information
about all features. As of February 2022, a total of 11,912 fea-
tures (excluding those of the Web Driver and Web Extensions
components) are tracked by this dataset.

In Figure 2 we show the number of features that have been
added or removed for each browser version, for the three main
browser engines: Chromium (Chrome), Gecko (Firefox), and
WebKit (Safari). Interestingly, with every browser release tens
to hundreds of new features are introduced; for Firefox and
Chrome a new version is released approximately every month,

0 20 40 60 80 100
Chrome version

0

100

200

300

Nu
m

be
r o

f f
ea

tu
re

s

0 20 40 60 80 100
Firefox version

0

200

400

Nu
m

be
r o

f f
ea

tu
re

s

1.1 1.3 3 4 5.1 7 9 10 11 12 13 14 15 15.4
Safari version

0

250

500

750

Nu
m

be
r o

f f
ea

tu
re

s

Fig. 2. Number of features added/removed per browser version.

for Safari this is between 3 and 6 months. Furthermore, a
limited number of features are removed from the browser. This
can be the result of various reasons, as we will discuss in the
remainder of this section.

B. Lifetime of a browser feature

Before a new feature lands in the browser, it will typically
have gone through a standardization track to ensure compati-
bility among different browsers. As such, most features share
a common lifetime, which can be summarized as follows:

Initiation. The first step in the lifetime of a browser feature
is its initiation. Typically, this is the result of a growing need of
web developers to implement certain functionality that is either
not possible or highly cumbersome with existing browser
features. Alternatively, new features may be introduced to
give web developers ways to protect against new attacks
(e.g. using a Cross-Origin Opener Policy), or that improve
existing features (e.g. the Service Worker API that overrides
Application Cache). The new feature can then be proposed
in a common forum such as the Web Incubator Community
Group (WICG), in the form of a specification. As of February
2022, a total of 127 features have been drafted and are being
discussed in the WICG.

Consensus. Once a draft specification has been submitted
to WICG, it is publicly discussed among community members

and browser vendors, possibly leading to changes to the
proposed mechanism. The specification editors then aim to
achieve consensus among the different stakeholders, after
which the draft is finalized. At this point, the specification can
be incorporated by the World Wide Web Consortium (W3C),
or become part of the Web Hypertext Application Technology
Working Group (WHATWG) living standard.

Implementation. Once a standardized specification is avail-
able, browsers can start implementing the feature. Initially,
as the implementation is still gaining maturity, features are
typically only available behind a configuration flag that can
be enabled by the end-users. Alternatively, Chromium-based
browsers have a concept of “Origin Trials”, which allows
developers to experiment with new web platform features [3].
Similarly, Firefox has a similar mechanism named “site per-
mission add-ons”, which allows individual sites to request a
user’s permission to a add-on-gated feature [4].

Adoption. When the implementation of a new browser
feature has sufficiently matured, browsers will enabled it by
default, and websites can start adopting it. If possible, a polyfill
implementation that provides the same functionality albeit at
a likely worse performance is provided to ensure backward
compatibility for users with older browser versions.

Deprecation. As the web platform is constantly changing,
it might be that after some time a feature is superseded by a
newer mechanism, or that the initial expected support for the
feature did not match the reality and it was never adopted.
Additionally, in worse cases, it could be that the feature
introduces new web vulnerabilities that were not considered
when the feature was initially introduced. An example of such
a case is the browser’s reflected XSS detection mechanism,
which could be controlled through the X-XSS-Protection
header. When it was found that this feature would introduce
various cross-site information leaks, and could be circum-
vented, it was deprecated and eventually removed from the
web platform.

Removal. As features need to be maintained and extend the
threat surface, deprecated features should be removed from
the web platform. However, when a feature is already in use
by a number of websites, which may rely on its presence,
the removal of a feature may be arduous as it could cause
existing websites to break in a particular browser. For some
features, it may take several years before it can be completely
removed from the web platform. This is especially worrisome
for features that introduce vulnerabilities, or that inhibit the
development of a more secure browser design. In this paper we
propose a new mechanism to expedite the removal of features,
or limit the nefarious side-effects of its presence.

C. Deprecation of web features

Next, we explore the deprecation of web platform features
in more depth, and again leverage the browser compatibility
dataset by MDN [2]. In Figure 3 we show the total number
of deprecated features over time, along with the percentage
they make up out of the total number of featured. On the
bottom graph we show the number of features that became

2018-01
2018-07

2019-01
2019-07

2020-01
2020-07

2021-01
2021-07

2022-01
0

500

1000

Nu
m

be
r o

f f
ea

tu
re

s

Deprecated features (total and %)

2018-02
2018-08

2019-02
2019-08

2020-02
2020-08

2021-02
2021-08

2022-02
0

100

200

Nu
m

be
r o

f f
ea

tu
re

s

Newly deprecated features

0.09

0.10

0.11

0.12

%
 o

f d
ep

re
ca

te
d

fe
at

ur
es

Fig. 3. Total number of deprecated features over time, as tracked by MDN.
The top graph shows the total number of deprecated features over time (blue),
and the percentage of features that have been marked as deprecated (red). The
bottom graph shows the number of features that were marked as deprecated
in a particular month.

TABLE I
NUMBER OF DEPRECATED FEATURES THAT HAVE BEEN ENABLED OR

REMOVED FROM THE THREE MAIN BROWSER ENGINES.

Browser
Deprecated
and enabled

Deprecated
and removed Total removed

Chrome 1,093 152 234
Firefox 1,036 209 306
Safari 1,191 54 68

deprecated in a granularity of one month. We note that the
large increase in deprecated features in early-2018 is due to a
large number of new entries being added to the dataset, and
thus do not accurately reflect the deprecation rate. Overall, we
find that more than 10% of web platform features are marked
as deprecated, despite the large number of new features being
introduced (see Figure 1). This percentage has remained fairly
stable over time.

As of February 2022, we find that a total of 1,245 (10.45%)
features have been marked as deprecated. In Table I we
show the number of these deprecated features that are still
supported by the three main browser engines. This data clearly
shows that the vast majority of deprecated features still remain
supported by most browsers; e.g. 1,093 deprecated features are
still supported by the Chrome browser. In fact, we find that
features may remain in the deprecated status for several years,
clearly indicating that completely removing features from the
web platform is highly challenging. Finally, some features
were also removed from the browser that were previously not
marked as deprecated. These include features that have been
removed for a long time, and for which the deprecated status
was thus not captured in the dataset, and features that were

2017 2018 2019 2020 2021
0.0

0.1

0.2

0.3

0.4
Pe

rc
en

ta
ge

 o
f s

ite
s

Fig. 4. Percentage of page loads using AppCache in a secure context, based
on data from Chrome Platform Status metrics.

experimental on which web developers should not rely, such as
the X-XSS-Protection header. However, even considering
all the features that have been removed from the web platform,
there are still 3-4 times as many deprecated features that are
still enabled, extending the threat surface of the browser.

III. IMPROVING SECURITY OF THE WEB PLATFORM

As the web platform is evolving, also its security needs to
evolve: new attacks are discovered, or existing security issues
become more prevalent due to the increased complexity of web
applications. We can distinguish improvements to the security
of the web platform in three different classes, which we will
discuss in more detail throughout this section. A first class
of security improvements is to minimize the attack surface
of the browser and limit the features that an adversary could
leverage as a gadget in their attacks. Second, the architecture
of browsers might have to change over time in order to
accommodate for new attacks that are discovered, such as
Spectre. In order to support certain features, the improvements
of the browser architecture cannot be made, and thus these
features may impede the security of the browser. Finally,
as there exist many legacy applications which may not be
frequently updated, the security guarantees that the browser
provides by default should be as strong as possible.

A. Thwarting attacker gadgets

Every browser feature that interacts with a cross-site re-
source, whether it is fetching it, parsing it or rendering it,
has the potential of revealing information about this (poten-
tially sensitive) response. As new features are proposed, these
typically undergo a review to assess whether these introduce
new ways to leak information. However, this assessment might
not have been performed on features that were introduced
at an earlier stage, and that are still enabled in browsers.
Moreover, the security assessment might have missed certain
attack vectors, or because of newly discovered vulnerability
classes, the security impact of a feature may change over time.
This is particularly undesirable for features that are deprecated
and will be removed from the web platform: the longer that
these features remain enabled, the longer these pose a threat.

An example of a deprecated feature that could be abused
to launch attacks, is Application Cache (AppCache). Several
years after the introduction of AppCache, at a time that trans-
port security (SSL/TLS) had become more prevalent, it was
apparent that the feature posed a significant threat when the
page was loaded over an insecure context. More specifically,
when the page was loaded over an unencrypted connection,
a MitM attacker could install a malicious Application Cache.
As a result, this would give the adversary permanent access to
the website, even when the user is no longer connected to the
network compromised by the adversary. As a reaction, browser
vendors deprecated the use of AppCache in insecure contexts.
A detailed timeline of the deprecation for the main browser
engines can be found in Figure 5. Firefox was the first to
deprecate AppCache (September 2015), which was followed
by Chrome, where the use in insecure contexts was deprecated
in February 2016. Safari deprecated the use of AppCache in
January 2018. For Firefox and Chrome it was almost three
years later that the use of AppCache was restricted to secure
contexts (September and October 2018 respectively).

Later on, it became apparent that AppCache was the source
of other security issues as well. For instance, it could be
abused to leak the response status, as reported by Lee et al.
in 2015 [5]. More recently, Herrera found that the pattern
matching feature of AppCache could be abused to determine
the URL of a redirect, which could be used to leak access
tokens or determine the identity of the user [6]. Other is-
sues that were reported to the browser vendors include a
circumvention of Chrome’s Cross-Origin Resource Blocking
(CORB) mechanism [7], [8], a leak of information about the
size of responses [9], or even a use-after-free vulnerability that
resulted in a remote code execution [10]. These issues led to
the general deprecation of AppCache: in Firefox it was already
deprecated in September 2015; Chrome announced its intent
to deprecate in August 2018, which was approved more than
a year later in September 2019; Safari deprecated the feature
in January 2018.

Similar to the process of disabling the use of AppCache
in insecure contexts, the complete removal of the feature
also took several years since its deprecation. In Safari, it is
even still supported at the time of writing (February 2022).
This means that the continued support for a single feature,
which at its peak was only used by approximately 0.4% of
sites according to the HTTP Archive dataset, expanded the
browser’s threat surface and allowed adversaries to launch
attacks that were otherwise not possible, for several years.
Interestingly, when looking at the prevalence of AppCache
used in a secure context, an increase can be identified starting
from approximately February 2018, several years after the dep-
recation of the feature in Firefox and just after its deprecation
in Safari. It was only when the feature was removed in the
Chrome browser by default that the number of sites using it
dropped significantly, as can be seen in Figure 4, which shows
the usage of AppCache in a secure context over time based

Sep 2015
Jan 2016

May 2016
Sep 2016

Jan 2017

May 2017
Sep 2017

Jan 2018

May 2018
Sep 2018

Jan 2019

May 2019
Sep 2019

Jan 2020

May 2020
Sep 2020

Jan 2021

May 2021
Sep 2021

Jan 2022

May 2022

Deprecated on insecure context

Intent to remove in insecure context

Restricted to secure context

Intent to deprecate

Deprecation approved

Restrict AppCache scope

Removed by default
Removed Origin Trial

Deprecated

Intent to remove in insecure context

Intent to remove
Restricted to secure context

Removed in nightly
Removed in all channels

Deprecated

Still supported

Chrome
Firefox
Safari

Fig. 5. Timeline of the deprecation and removal of Application Cache in Chrome, Firefox and Safari.

on data from Chrome Platform Status metrics1.
Although the feature could still be used maliciously when it

was only available through an Origin Trial, the browser vendor
retained more control over which sites were using it, and the
token could be revoked in case of abuse. However, this would
most likely not prevent targeted attacks.

B. Improving browser architecture

A second class of implications that deprecated features
may have, is that they may impede the implementation
of mechanisms that improve the security of the browser
and its general architecture. A concrete example of such
a deprecated feature is the document.domain property,
which can be used to relax the same-origin policy. More
specifically, by setting this property, two pages that are
cross-origin but same-site can access each other directly. For
example, a page on https://foo.example.com
can access https://bar.example.com when
the document.domain property is set to
https://example.com on both pages. Not only does
this feature diminish the protections provided by the same-
origin policy, it also prevents the adoption of origin-based
process isolation [11]. As other, more secure mechanisms,
such as postMessage and MessageChannel, can be used
for cross-origin communication, the document.domain
feature has been deprecated.

Although it has been generally known that it has unfavorable
side-effects, it was only deprecated in the WHATWG standard
in July 20202 and the official deprecation in Chrome is only
planned for approximately September 20223. Most likely, the
reason for this is that the usage of the feature has been
relatively high, with over 10% of page visits setting the
document.domain property4. Nevertheless, only in a small

1https://chromestatus.com/metrics/feature/timeline/popularity/1248
2https://web.archive.org/web/20200715094921/https://html.spec.whatwg.

org/multipage/origin.html#relaxing-the-same-origin-restriction
3https://chromestatus.com/feature/5428079583297536
4https://chromestatus.com/metrics/feature/timeline/popularity/2026

fraction of the cases (0.3% to 0.5% of page visits) is the
relaxation of the same-origin policy actually used5.

Because the browser does not know in advance whether
the document.domain property will be set, it cannot know
whether the browser process of the web page can be isolated
according to origin (host, scheme and port). Hence, browser
processes can currently only be isolated at the granularity
of a site, i.e. eTLD+1 and scheme [11]. As the deprecation
and removal of the document.domain is expected to be
a painstaking experience, a new mechanism named origin-
keyed agent clusters was introduced [12] and added to the
HTML standard. The feature, which is based on a response
header (Origin-Agent-Cluster) can be used by web
developers to indicate whether or not a relaxation of the same-
origin policy through the document.domain setter should
be disabled. When disabled, which browser vendors aim to
make the default, the isolation of processes can be made at
the level of origin, providing better protection against Spectre
attacks [13].

C. Security by default

A third way in which features affect the improvement of the
security of browsers, is by introducing new features, typically
in the form of response headers, that can be used to control the
potentially nefarious effects of legacy mechanisms. A concrete
example of such a case is the embedding of cross-origin pages,
which is known to be the source of a myriad of security
issues [14], [15]. To give web developers the possibility
to defend against these attacks, the X-Frame-Options
header and frame-ancestors directive of CSP has been
introduced. However, because in an earlier era of the web,
framing content was a very prominent way of creating web
applications, its overall usage is still pervasive, especially
on legacy applications. Consequently, deprecating this feature
would not be “web compatible”. Instead, a current proposition
is to require an explicit opt-in for a web page to be embedded
in a cross-origin context [16].

5https://chromestatus.com/metrics/feature/timeline/popularity/2544

https://chromestatus.com/metrics/feature/timeline/popularity/1248
https://web.archive.org/web/20200715094921/https://html.spec.whatwg.org/multipage/origin.html#relaxing-the-same-origin-restriction
https://web.archive.org/web/20200715094921/https://html.spec.whatwg.org/multipage/origin.html#relaxing-the-same-origin-restriction
https://chromestatus.com/feature/5428079583297536
https://chromestatus.com/metrics/feature/timeline/popularity/2026
https://chromestatus.com/metrics/feature/timeline/popularity/2544

Another response header that has been introduced to miti-
gate issues that are caused by a legacy feature, is the Cross-
Origin Opener Policy (COOP). This mechanism can be used
by web pages to instruct the browser that cross-origin pages
cannot retain a reference to it, e.g. via the window.opener
property or when the page was opened via window.open().
When the header is set, the page is protected against various
XS-Leak attacks, such as counting the number of frames [17],
and is the practicality of other attacks severely limited [18].
Similarly to embedding cross-origin pages, there is a small but
significant portion of web applications that rely on using this
mechanism, and therefor it is unlikely that it can be deprecated
or removed as this would likely cause a backlash from web
developers. Instead, it has been proposed that COOP should
be enabled by default whilst allowing sites to explicitly opt
out [19]. This would ensure that websites are secure by default,
which is a significant improvement over the current state
where the security of the vast majority of web applications
is sacrificed to retain support of a legacy feature that is used
by a limited number of websites.

IV. PROGRESSIVELY IMPROVING WEB SECURITY

In this section we propose a new mechanism that aims to
facilitate a progressive improvement of the security of the
web platform with regards to the deprecation and removal of
features that inhibit this improvement. First, we determine the
different requirements for such a mechanism. Based on these
requirements and a qualitative analysis of the current state of
deprecation and removal of web features and the techniques
that are used to improve security on the web, we introduce a
mechanism that meets these requirements.

A. Goals and requirements

Although there are several ways through which new features
can be introduced to the platform, there is no synchronized
way to remove them if they lack adoption or, even worse,
introduce security issues. A first goal of our proposed mecha-
nism is that the way that features are deprecated and eventually
removed from the browser is synchronized. This has several
advantages: when all browser vendors agree upon a fixed date
when features are deprecated or removed, the behavior of
those features will be the same in all browsers. Consequently,
consequences of the removed support will be the same in
all browsers, and, in case of backlash from web developers,
browser vendors will not be singled out. This has been
indicated as the cause of delaying the process of deprecation
and feature removal [20].

A second goal is that the mechanism should aim to grad-
ually improve security. Due to the dynamic aspects of how
features are adopted and used, it is practically infeasible to
instantly switch to a more secure version of the web. Instead,
this change should be gradual, and be focused on initially
reducing the adoption rate of a feature, e.g. through depreca-
tion, whilst providing more secure alternative solutions. In a
second phase, the support for security-sensitive features can
be either removed, or required to explicitly be opt-in. This

allows websites that rely on the feature to still use it with the
additional effort of setting a response header, at the expense
of their own security.

For the mechanism we introduce to progressively improving
security, we aim to provide a tailored approach for handling
features depending on their impact on security. For instance,
the deprecation and removal of features that can be used by
adversaries to launch attacks on websites should be treated
differently than features whose usage could affect the security
of a website. Although an opt-out in the latter case would only
affect the security of a single site, if it would be possible to
still use a feature that can be used to attack other sites, its
remained support affects the security of all sites.

Furthermore, the aim of the progressive security mecha-
nism should be to eventually guarantee security by default.
Concretely, regardless of which web APIs are used, a web
application should be protected against attacks. In the current
state of the web, this is not the case. For instance, if a website
does not explicitly prevent framing, it currently is susceptible
to a series of attacks such as clickjacking, cross-origin leaks,
or even certain cross-site scripting attacks [15].

Another requirement for the progressive security mechanism
is that it should be straightforward to implement in order
to facilitate deployment. However, it should also provide a
sufficient level of granularity to allow web developers to
customize their configuration to match the requirements of
their application. We believe that a strategy that is used
by current (ad-hoc) deprecation and removal efforts is most
suitable: initially deprecating a feature to raise awareness that
a certain feature is intended to be removed, followed by the by-
default removal of the feature, possibly providing an explicit
opt-in to indicate that the feature should still be enabled.
Finally, the presence and settings of the progressive security
mechanism should be communicated as soon as possible
such that the browser can take appropriate actions before the
web page is rendered.

B. Progressive security

Our proposed mechanism that aims to gradually improve the
security of the web platform by facilitating the deprecation and
removal of browser features, is based on a monotonic increas-
ing version system. With each new version number, features
can be moved to either the deprecated list, the unsupported list,
or the list of (security) features that are enabled by default,
where the composition of each of these lists are synchronized.
That is, the web community agrees upon which features need
to be deprecated, removed or enabled by default. As the main
focus of this mechanism is to improve the security of the web
platform, we believe that the scope of the features that should
be considered are only those that have a security impact. In
their study on feature deprecation in Chrome, Mirian et al.
categorized 118 deprecated features, and found that 26 of those
were due to security concerns [20].

With this version system, it is possible to achieve the same
granularity of actions compared to most of the current indi-
vidual deprecation and removal efforts. In the most straight-

forward scenario, a feature could be marked as deprecated
in version n, and eventually removed in version n + 1 or
n + 2. However, an alternative option is also feasible where
the feature is first deprecated in version n, which may be
followed by a security mechanism that is enabled by default
and mitigates the issues caused by the deprecated feature. In
this case, the majority of web sites will be protected whereas
it is still possible for websites to opt out of the security
mechanism, at their own risk. Ideally, the enabled-by-default
state is only temporary, and the feature that causes a security
impact is eventually removed from the web platform.

The last set of features that need to be defined by the web
community is those that are unsupported, but that can be re-
enabled by explicitly opting in to it. For example, once a
feature such as Application Cache has been placed on the
unsupported list, it will not be available by default. However,
if a website explicitly declares that it wants to use it, it will
be re-enabled depending on the current progressive security
version of the browser. For example, if a feature was added
to the unsupported list in version n, then it would only be
possible to explicitly opt in to it as long as the progressive
security version that is considered the default in the browser
is less than or equal to n+2. The mechanism of this explicit
opt-in is similar to what web developers can achieve with the
reverse origin trial (as was the case for Application Cache), In
the case of AppCache, there were only a very limited number
of sites that continued using the feature after it required an
explicit opt-in. As such, we believe that this provides a good
trade-off between retaining support for legacy applications and
guaranteeing security for most web users.

By allowing an explicit opt-in for features that are con-
sidered unsupported, it is important to distinguish between
features that pose a security threat to the site itself, or that
can be used to attack other sites. While the former only affects
the security of the single site, which knowingly agrees to this
threat, in the latter case the feature could be used launch cross-
site attacks on any other website. As such, we propose that
in case a website wants to opt in to using a feature that can
possibly harm other sites in attacks, this would require explicit
permission from the user. This permission could be granted in
a similar fashion as to how permission needs to be granted
for access to the microphone or camera. Although users
could be tricked in providing this permission, any possible
attack leveraging the deprecated feature would still require a
manual interaction from the targeted user, thereby hindering
or impeding the adversary.

Finally, in order to gradually improve security, the web
community will determine at what time, i.e. for which browser
releases, the minimal progressive security version will become
required. Ideally, it can be agreed upon by the web vendors that
the new browser versions requiring a new progressive security
version are in quick succession. This will ensure that changes
occur globally at a predefined time, and thus features will stop
working at the same time in all browsers. To further facilitate
testing the impact of new progressive security features, the
beta or nightly versions of the browser could require a higher

minimal progressive security version.

C. Implementation

When the set of features for the different feature lists (depre-
cated, unsupported, removed, enabled-by-default, and enabled-
by-default-no-opt-out) has been defined and agreed upon for
the current progressive security versions, this still needs to
be enforced by the browser. The default policy that will be
enforced by the browser is based on the progressive security
version that is considered the minimal required version. Web
developers can opt to deviate from this behavior by specifying
a Progressive-Security response header. This header
is defined as follows:

P r o g r e s s i v e −S e c u r i t y :
v e r s i o n ;
[unsa fe−opt−o u t =(f e a t u r e l i s t) ;]
[unsa fe−opt−i n =(f e a t u r e l i s t)]

As such, the header has one required value, namely the
progressive security version. The browser will ensure that this
is capped to the available versions, i.e., the enforced version
will be at least as high as the default browser policy and
not higher than any of the currently supported versions. This
means that with the version parameter, websites can only opt
in to stronger security guarantees compared to the default.
Furthermore, if a website owner sets the header with a certain
version number and then forgets to update the value for an
extended amount of time, the site will still have the same
security level as if it would not set the header. By capping
to the maximum supported version, websites could set the
value to a very high integer and always be opted in to the
maximum security levels that are available. This may however
come at the cost of compatibility, as a new progressive security
version could cause a browser feature on which the site relies
to be removed. Instead, in the ideal use-case, web develops
would first verify the compatibility of their website with a
new progressive security version by using a beta or nightly
build of the browser and then explicitly opt in to it.

The first optional directive is unsafe-opt-out, which
can be used to opt out of security mechanisms that are
enabled by default, i.e. those that are on the enabled-by-
default list. As this could negatively affect the security of the
website, it is prefixed with the unsafe keyword, similar to
the unsafe-inline and unsafe-eval keywords in CSP.
The aim of this is to discourage web developers from choosing
to opt out of security features, as in a future progressive
security version it may no longer be possible to do so, i.e.
when the security feature is placed on the enabled-by-default-
no-opt-out list.

The second optional directive is unsafe-opt-in, which
can be used to re-enable features that are considered as
unsupported. For features that are defined in this directive,
a distinction needs to be made whether these are features that
can only cause harm to the current website, or that could
be used to attack other sites. An example of the former is
the setting of the document.domain property: this relaxes

�✁

✂✄☎✆✝✞✟✠✡☛☞✌

✍✎✏✑✒✓✔✕

✖✗✘✙✚✛ ✜✢✣✤

✥✦

✧★

✩✪✫✬✭✮✯ ✰✱✲✳✴✵✶

✷✸✹✺✻ ✼✽✾✿

❀❁❂❃❄❅❆❇

❈❉❊

❋●❍ ■❏❑▲▼◆❖

P◗ ❘❙❚❯❱❲❳

❨❩❬

❭❪

❫❴❵❛❜❝❞

❡❢❣❤✐❥❦ ❧♠♥♦♣q rst✉

✈✇①②③④⑤

⑥⑦⑧⑨⑩❶❷❸❹❺

❻❼

❽❾❿ ➀➁➂➃➄➅➆

➇➈ ➉➊➋➌➍➎➏

➐➑➒➓➔→➣

↔↕➙

➛➜

➝➞

➟➠➡➢➤➥➦➧➨➩➫➭➯➲

➳➵➸➺➻➼➽➾➚ ➪➶➹➘

➴➷➬➮➱✃ ❐❒❮❰ÏÐÑÒ

ÓÔÕÖ×ØÙ ÚÛ ÜÝÞßàáâãä åæçè

éêëìíîïðñòóôõö÷øùú ûüýþ

ÿ�

✁✂✄☎✆✝✞✟✠✡☛☞✌

✍✎✏✑✒✓✔✕✖ ✗✘✙✚

✛✜✢

✣✤

✥✦✧

★✩✪✫✬✭✮

✯✰✱✲ ✳✴✵✶✷

✸✹✺✻✼✽

✾✿❀❁

❂❃❄❅ ❆❇❈❉

❊❋●❍■❏❑▲▼◆

❖P ◗❘❙

❚❯❱❲❳❨❩❬

❭❪❫❴❵❛ ❜❝❞❡❢❣❤ ✐❥❦❧

♠♥♦♣qrst✉✈✇ ①②③④

⑤⑥⑦⑧ ⑨⑩❶ ❷❸❹ ❺❻❼❽❾❿➀➁ ➂➃ ➄➅➆➇➈➉➊➋➌

➍➎➏➐ ➑➒➓➔→➣↔

↕➙➛➜➝➞➟ ➠➡➢➤

➥➦➧➨➩➫➭➯ ➲➳➵➸➺➻➼ ➽➾

➚➪➶➹➘➴➷➬➮➱ ✃❐❒❮

❰ÏÐ ÑÒÓÔ

ÕÖ×ØÙÚÛ ÜÝÞßàáâ

ãäå æçèéêëìí

îïðñòóô õö

÷øùúûüýþÿ

�✁✂✄☎✆✝✞✟✠✡ ☛☞✌✍

✎✏✑✒✓✔✕ ✖✗✘✙✚✛✜

✢✣✤ ✥✦✧★✩✪✫✬

✭✮✯✰✱✲✳ ✴✵

✶✷✸✹✺✻✼ ✽✾✿❀

❁❂❃❄❅❆ ❇❈❉❊❋●❍■

❏❑▲▼◆❖P ◗❘ ❙❚❯❱❲❳❨❩❬❭

❪❫❴❵❛❜❝❞❡❢❣❤✐❥❦❧♠♥

♦♣qr

st✉✈✇① ②③④⑤⑥⑦⑧⑨ ⑩❶❷❸❹❺❻ ❼❽

❾❿➀➁➂➃➄➅➆➇➈➉➊➋➌➍➎➏➐➑➒➓➔→➣↔↕➙➛

➜➝➞➟

➠➡➢ ➤➥➦➧➨➩➫

➭➯ ➲➳➵➸➺➻➼

➽➾➚

➪➶➹

➘➴➷

➬➮

➱✃ ❐❒

Fig. 6. Flowchart of how the Progressive-Security header is parsed
and enforced.

the same-origin policy for the website and prevents process-
isolation at the origin-level, thereby only affecting the security
of the website that chooses to still opt in to the feature. On
the other hand, the Application Cache feature can be used to
perform cross-site attacks, and should thus be handled differ-
ently. Concretely, we propose that the user should explicitly
give permission to the website to use a legacy feature.

Summary. In Figure 6 we show a flowchart that reflects
how the browsers builds the policy that needs to be enforced,
and the actions it takes to enforce it. In essence, the browser
will perform three main actions to enforce the policy:
1) Show warning messages when a deprecated feature is used.
2) Disable the features that are marked as either unsupported
or removed. Web developers can only choose to re-enable
features of the former set.
3) Enable security mechanisms that aim to protect against
issues caused by deprecated features. Web developers can only
opt out of a predefined set of security mechanisms.

D. Examples

Next, we analyze two use-cases of features that have been
deprecated and removed from the web platform or that are
in this process, and evaluate how this could have been done
via the proposed progressive security mechanism. We look
at Application Cache, a feature that was found cause various
security issues and that could be leveraged to launch cross-
origin attacks. We also consider the evolution towards origin-
based process isolation, which is still ongoing at the moment.
We opted for these examples to show the diversity and
granularity of the proposed mechanism, as the deprecation and
removal of these features are multi-step processes. For certain
other features, this process is straightforward. For instance, the
client-side XSS detection mechanism that could be controlled
via the X-XSS-Protection header was simply removed
from the web platform as it did not cause any compatibility
issues and was not supported by all browsers. For the proposed
progressive security mechanism, this coincides with adding the
feature to the removed list.

In Section III-A we described the deprecation and removal
process of application cache in detail, with a timeline of this
process shown in Figure 5. In short, the use of AppCache was
first deprecated in an insecure context, followed by a general
deprecation and direct removal (without the option of opt-
in) in insecure contexts. Next, the feature was disabled by
default, but could still be re-enabled in Chromium by using
the Origin Trial mechanism. Finally, the Origin Trial disap-
peared and support for AppCache was completely removed.
In Table II we show how this process would have been if
the proposed progressive security mechanism was used. By
placing the appcache-insecure and appcache features
on the different lists, it is possible to approximately replicate
the deprecation and removal process.

One exception is that before the ultimate removal, Chrome
opted to restrict the scope of AppCache based on the path
on which AppCache was installed. Modifications of how the
feature is implemented, is not supported via the proposed
progressive security mechanism. Based on the deprecated
and removed features that we considered, we find that such
modifications are uncommon in practice. Another difference
is that for the explicit opt-in, the Origin Trial mechanism was
used, which gives the browser vendor detailed information
on which sites still rely on the feature. For the progressive
security mechanism, this opt-in occurs via setting a header,
and this insight may thus be lost. This information could still
be captured via large-scale crawls as performed by HTTP
Archive6 or through mechanisms such that Chrome’s Real
User Metrics7.

Process isolation at the origin level is a feature that,
at the time of this writing, is still under development. It
is mainly blocked by the presence of two legacy features,
namely the relaxation of the same-origin policy through the
document.domain property, and cross-origin module shar-

6https://httparchive.org/
7https://developers.google.com/web/tools/chrome-user-experience-report

https://httparchive.org/
https://developers.google.com/web/tools/chrome-user-experience-report

TABLE II
EVOLUTION OF THE APPLICATION CACHE AND ORIGIN ISOLATION

FEATURES ACCORDING TO THE PROGRESSIVE SECURITY MECHANISM.

AppCache Origin isolation

-- version 1 --
deprecated

+ appcache-insecure

-- version 2 --
deprecated

+ appcache

-- version 3 --
removed

+ appcache-insecure

-- version 4 --
unsupported

+ appcache

-- version 5 --
unsupported

- appcache
removed

+ appcache

-- version 1 --
deprecated

+ document-domain
+ cross-origin-wasm

-- version 2 --
enabled-by-default

+ origin-agent-cluster
unsupported

+ document-domain
+ cross-origin-wasm

-- version 3 --
unsupported

- document-domain
- cross-origin-wasm

removed
+ document-domain
+ cross-origin-wasm

enabled-by-default
- origin-agent-cluster

enabled-by-default-no-opt-out
+ origin-agent-cluster

ing in Web Assembly. So far, these two features have been
marked as deprecated in Chrome [21], [22] and will likely
be marked as deprecated in the specification [23]. In a second
stage, the browser intends to implement origin isolation, which
can be controlled through the Origin-Agent-Cluster
response header, and enable it by default [22]. This mechanism
ensures that processes will be isolated at the origin level,
and will thus prevent relaxation of the same-origin policy.
To achieve the same effect with the progressive security
mechanism, the two legacy features can be placed on the
unsupported list, and the origin-agent-cluster security feature
is placed on the enabled-by-default list. This allows web
developers to still opt out of the origin isolation, and use
either of the deprecated features. Note that this provides more
granularity as the current process, as the features could be
re-enabled independently.

In a final phase, the support for the legacy features might
need to be completely removed, and the origin-agent-cluster
security mechanism could then be enabled by default, without
allowing an opt-out. This can be achieved by moving the
legacy features from the unsupported list to the removed list,
and moving the origin-agent-cluster feature to the enabled-
by-default-no-opt-out list. Although we indicate that these
changes occur in consecutive versions of the progressive
security mechanism, in reality the timeline may differ, and
might also depend on the effects on feature adoption at the
time of deprecation. Nevertheless, these aspects should be
agreed upon by the larger web community as part of an
(ongoing) standardization effort.

V. DISCUSSION

A. Comparison to current state

The main difference with the way that deprecation and
removal of web features is currently performed, is that this
occurs through a synchronization effort, cooperatively between
the different browser vendors and web developers. Currently,

the intent to deprecate or remove a feature is announced
via a public mailing list for Firefox8 and Chromium9. Safari
announces changes via release notes10. Although other browser
vendors are typically polled on their stance of deprecating
or removing a feature, each browser vendor mainly decides
for themselves whether and when to deprecate or remove a
feature. This two key disadvantages:

• Compatibility. If browsers disable support for features at
different times, in an uncoordinated fashion, a situation
may be created where a website become incompatible
in one browser, but remains compatible with a different
browser. From an end-user perspective, it may not be
clear that this is due the removal of an outdated feature.

• Deterrence effect. A side-effect of the varying depre-
cation and removal schedules that lead to differences
in website compatibility is a deterrence of removing
support for features. More specifically, a browser vendor
might be less inclined to remove a feature if this would
result in certain (features of) websites no longer being
available in their browser, possibly encouraging users to
switch browsers. Consequently, legacy features that have
a negative security impact may remain present in the web
platform for an extended time.

With the proposed progressive security mechanism, features
should be removed at approximately the same time in the
different browser engines, depending on their release cycle.

Another benefit of the proposed progressive security mecha-
nism is that it provides a unified framework for the deprecation
and removal of web features. In the current state of the
web, this process is mostly ad-hoc, possibly unique for the
different features, and thus it might not be clear for web
developers which exact actions they can take in order to remain
compatible, or which time schedule they are provided with
(which may differ depending on the browser). Despite the
advantages of this unified approach, it comes with one key
limitation, namely that it may limit the options for which
actions can be taken in the deprecation process. For example,
adjusting specific aspects of an API is not possible with the
current mechanism. The only instance that we are aware of
where this occurred, was in the removal process of Application
Cache by Chrome, where the scope for the mechanism was
limited, which improved security while remaining compatible
with websites that relied on the feature.

B. Agreement

The synchronization of the entries on the progressive secu-
rity list largely depends on the agreement among the different
browser vendors. As these may have different priorities and
goals, it could be that a single browser vendor wants to
postpone the removal of a certain feature. To deal with such
cases of disagreement, the browser vendors would ideally
commit to follow the majority vote, accepting that this may

8https://groups.google.com/a/mozilla.org/g/dev-platform/
9https://groups.google.com/a/chromium.org/g/blink-dev/
10https://webkit.org/blog/

https://groups.google.com/a/mozilla.org/g/dev-platform/
https://groups.google.com/a/chromium.org/g/blink-dev/
https://webkit.org/blog/

not always be in line with their development plans. In case
the browser vendor would not follow the majority vote, this
would be a deviation from best-practice with a known security
impact, possibly affecting the reputation of the browser vendor.
We believe that this could incentivize browser vendors to
come to an agreement. In the worst case, when it is not
possible to synchronize the progressive security list among
browser vendors, the proposed mechanism would only provide
a standardized way of deprecating and removing features, and
would only minimally improve upon the current status quo.

C. Selection of features

Although the progressive security mechanism can be used
for the deprecation, removal or introduction process of all
web features, we believe that limiting the set of features to
those that have a direct effect on security, either positive or
negative, has several advantages. If the number of features
tracked by the mechanism that are in the process of being
removed remains limited, this provides a clear overview for
web developers. Furthermore, by limiting the number features,
this provides more flexibility in the timeline of when new
progressive security versions are launched. We believe that
this reduction of complexity outweighs the extension of the
increased threat surface of deprecated features that have no
direct security impact caused by the lack of a streamlined
deprecation mechanism.

D. Feature removal

Depending on the feature, there are several ways in which it
can be removed from the web platform. For features that have
a very limited usage, and thus where removal would not cause
significant compatibility problems, the relevant API can simply
be omitted. However, for features that have a higher adoption
rate, the removal of the API could possibly cause syntax errors,
resulting in the script failing unexpectedly. Instead, the API
could be altered to no longer have any effect; which will ensure
that scripts that use it will not break. In general, although the
exact way of removal of a feature from the web platform is
not considered in the progressive security process, we believe
that it is important for reasons of consistency and compatibility
that this aspect is also standardized, ideally in the specification
of the relevant API or the HTML specification.

VI. RELATED WORK

Deprecation and subsequent removal of features from the
web platform is a largely uncharted research area. To date, only
a single study on the deprecation of browser features has been
conducted: in their work, Mirian et al. [20] perform an analysis
of web deprecations and explore how the process can be im-
proved to minimize the burden for users and web developers.
In total, the authors analyze 117 deprecated features, and find
that 25 of those were due to a security flaw or concern. In our
study, we specifically consider features that have a security
impact, as an improved deprecation and removal process will
additionally safeguard users and websites.

Prior work on deprecation of APIs has mainly focused on
studying its effect in various ecosystems. Zhou and Walker
how API deprecation is performed in 26 open-source Java
frameworks, and may often lead to outdated coding examples
on platforms such as StackOverflow [24]. Another analysis
of deprecation of Java APIs is performed by Sawant et al.,
who analyzed the impact of the deprecation of five popular
APIs on over 25,000 clients [25]. In a later study, Sawant et
al. study how developers react to deprecation of APIs, and
find that the vast majority of API consumers in fact do not
react to deprecated features [26]. Based on a user study of
developers, the authors found that one of the main reasons why
deprecations were not reacted to, was that the associated cost
was not worth it, as the API would still continue to work. We
believe that a more unified and standardized deprecation and
removal process could provide more clarity to web developers
on the concrete consequences and timeline.

Another related line of research explores how the threat
surface of applications can be minimized by reducing, or
debloating, the features that are available or accessible. In
the context of web browsers, Snyder et al. performed a cost-
benefit analysis to the various Web APIs that are offered
compared to how frequently these are used [27]. The authors
find that exposing all Web APIs poses a considerable security
and privacy risk while providing little benefit for legitimate
use-cases. Other work focuses on reducing the attack surface
of applications by minimizing the portions of the code that
is actually used. Qian, Hu et al. propose a system named
RAZOR that does this for binary applications, and used it
on the Firefox browser, leading to a reduction of code of
approximately 60% [28]. In the context of web applications,
Azad et al. show how the code can be significantly reduced,
removing code associated with known vulnerabilities or that
could be leveraged as a gadget [29].

VII. CONCLUSION

With an aim to standardize and improve the process of
deprecation and removal of features that affect the security of
users, browsers or websites, we propose a progressive security
mechanism. By gradually advancing the minimally required
version of security enhancements, the web platform can move
towards improving the current state of security. The proposed
versioned mechanism is based on past and ongoing ad-hoc
deprecation and removal processes, and provides a similar
granularity of actions that can be taken. It allows web vendors
to provide a grace period during which web developers can
choose to temporarily opt in to deprecated features, or opt
out of new security features that will be enabled by default.
Furthermore, it makes a distinction between legacy features
that could only harm the website opting in to it, and those that
can be used to launch cross-origin attacks. By standardizing
and unifying the deprecation and removal process among
different browser vendors, we believe that the deterrence effect
of removing features could be reduced, and that this could
facilitate the overall process for web developers.

ACKNOWLEDGMENTS

This research is partially funded by the Research Fund KU Leuven,
and by the Flemish Research Programme Cybersecurity.

REFERENCES

[1] A. Deveria, “Can I use,” Feb. 2022. [Online]. Available: https:
//caniuse.com/

[2] Mozilla Developer Network (MDN), “MDN browser compat data,” Feb.
2022. [Online]. Available: https://github.com/mdn/browser-compat-data

[3] Google Chrome, “Origin trials,” 2022. [Online]. Available: https:
//googlechrome.github.io/OriginTrials/

[4] Mozilla.org contributors, “Site permission add-ons,” 2022.
[Online]. Available: https://extensionworkshop.com/documentation/
publish/site-permission-add-on/

[5] S. Lee, H. Kim, and J. Kim, “Identifying cross-origin resource status
using application cache.” in NDSS, 2015.

[6] L. Herrera, “AppCache’s forgotten tales,” May 2021. [Online].
Available: https://blog.lbherrera.me/posts/appcache-forgotten-tales/

[7] L. Anforowicz, “In presence of NetworkService, AppCache may
be used to bypass CORB,” Nov. 2018. [Online]. Available: https:
//bugs.chromium.org/p/chromium/issues/detail?id=910210

[8] ——, “AppCache may be used to bypass CORB,” Jan.
2019. [Online]. Available: https://bugs.chromium.org/p/chromium/
issues/detail?id=927471

[9] T. Van Goethem, M. Vanhoef, F. Piessens, and W. Joosen, “Request and
conquer: Exposing cross-origin resource size,” in 25th USENIX Security
Symposium (USENIX Security 16), 2016, pp. 447–462.

[10] N. Williamson and N. Baumstark, “Security: UaF in Appcache,”
Sep. 2018. [Online]. Available: https://bugs.chromium.org/p/chromium/
issues/detail?id=888926

[11] D. Vogelheim and M. West, “Origin isolation and deprecating
document.domain,” Nov. 2021. [Online]. Available: https://github.com/
mikewest/deprecating-document-domain

[12] WICG, “Origin-keyed agent clusters explainer,” Dec. 2020. [Online].
Available: https://github.com/WICG/origin-agent-cluster

[13] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher et al., “Spectre attacks: Exploit-
ing speculative execution,” in 2019 IEEE Symposium on Security and
Privacy (SP). IEEE, 2019, pp. 1–19.

[14] G. Rydstedt, E. Bursztein, D. Boneh, and C. Jackson, “Busting frame
busting: a study of clickjacking vulnerabilities at popular sites,” IEEE
Oakland Web, vol. 2, no. 6, 2010.

[24] J. Zhou and R. J. Walker, “Api deprecation: a retrospective analysis and
detection method for code examples on the web,” in Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2016, pp. 266–277.

[15] F. Braun and M. Heiderich, “X-Frame-Options: All about
clickjacking?” Dec. 2013. [Online]. Available: https://frederik-braun.
com/xfo-clickjacking.pdf

[16] M. West, “Embedding should require explicit opt-in,” Nov. 2020. [On-
line]. Available: https://github.com/mikewest/embedding-requires-opt-in

[17] XS-Leaks wiki, “Frame Counting,” Oct. 2020. [Online]. Available:
https://xsleaks.dev/docs/attacks/frame-counting/

[18] ——, “Cross-Origin-Opener-Policy,” Oct. 2020. [Online]. Available:
https://xsleaks.dev/docs/defenses/opt-in/coop/

[19] M. West, “COOP by default,” Oct. 2020. [Online]. Available:
https://github.com/mikewest/coop-by-default

[20] A. Mirian, N. Bhagat, C. Sadowski, A. P. Felt, S. Savage, and G. M.
Voelker, “Web feature deprecation: a case study for chrome,” in 2019
IEEE/ACM 41st International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP). IEEE, 2019, pp. 302–
311.

[21] L. Vahl, “Intent to deprecate: WebAssembly cross-origin module
sharing,” Jul. 2021. [Online]. Available: https://groups.google.com/a/
chromium.org/g/blink-dev/c/nhmP8A61xk8/m/VuJXK8HQAwAJ

[22] D. Vogelheim, “Intent to ship: Origin isolation by de-
fault / deprecate document.domain,” Dec. 2021. [Online].
Available: https://groups.google.com/a/chromium.org/g/blink-dev/c/
oRc19PjpFo/m/xUsWtryQAgAJ

[23] C. Lamy, “Deprecate cross-origin module sharing,” Apr. 2021. [Online].
Available: https://github.com/WebAssembly/spec/issues/1303

[25] A. A. Sawant, R. Robbes, and A. Bacchelli, “On the reaction to
deprecation of 25,357 clients of 4+ 1 popular java apis,” in 2016
IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 2016, pp. 400–410.

[26] ——, “To react, or not to react: Patterns of reaction to api deprecation,”
Empirical Software Engineering, vol. 24, no. 6, pp. 3824–3870, 2019.

[27] P. Snyder, C. Taylor, and C. Kanich, “Most websites don’t need to
vibrate: A cost-benefit approach to improving browser security,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 179–194.

[28] C. Qian, H. Hu, M. Alharthi, P. H. Chung, T. Kim, and W. Lee,
“RAZOR: A framework for post-deployment software debloating,” in
28th USENIX Security Symposium (USENIX Security 19), 2019, pp.
1733–1750.

[29] B. A. Azad, P. Laperdrix, and N. Nikiforakis, “Less is more: quantifying
the security benefits of debloating web applications,” in 28th USENIX
Security Symposium (USENIX Security 19), 2019, pp. 1697–1714.

https://caniuse.com/
https://caniuse.com/
https://github.com/mdn/browser-compat-data
https://googlechrome.github.io/OriginTrials/
https://googlechrome.github.io/OriginTrials/
https://extensionworkshop.com/documentation/publish/site-permission-add-on/
https://extensionworkshop.com/documentation/publish/site-permission-add-on/
https://blog.lbherrera.me/posts/appcache-forgotten-tales/
https://bugs.chromium.org/p/chromium/issues/detail?id=910210
https://bugs.chromium.org/p/chromium/issues/detail?id=910210
https://bugs.chromium.org/p/chromium/issues/detail?id=927471
https://bugs.chromium.org/p/chromium/issues/detail?id=927471
https://bugs.chromium.org/p/chromium/issues/detail?id=888926
https://bugs.chromium.org/p/chromium/issues/detail?id=888926
https://github.com/mikewest/deprecating-document-domain
https://github.com/mikewest/deprecating-document-domain
https://github.com/WICG/origin-agent-cluster
https://frederik-braun.com/xfo-clickjacking.pdf
https://frederik-braun.com/xfo-clickjacking.pdf
https://github.com/mikewest/embedding-requires-opt-in
https://xsleaks.dev/docs/attacks/frame-counting/
https://xsleaks.dev/docs/defenses/opt-in/coop/
https://github.com/mikewest/coop-by-default
https://groups.google.com/a/chromium.org/g/blink-dev/c/nhmP8A61xk8/m/VuJXK8HQAwAJ
https://groups.google.com/a/chromium.org/g/blink-dev/c/nhmP8A61xk8/m/VuJXK8HQAwAJ
https://groups.google.com/a/chromium.org/g/blink-dev/c/_oRc19PjpFo/m/xUsWtryQAgAJ
https://groups.google.com/a/chromium.org/g/blink-dev/c/_oRc19PjpFo/m/xUsWtryQAgAJ
https://github.com/WebAssembly/spec/issues/1303

	Introduction
	Web platform features
	Overview
	Lifetime of a browser feature
	Deprecation of web features

	Improving security of the web platform
	Thwarting attacker gadgets
	Improving browser architecture
	Security by default

	Progressively improving web security
	Goals and requirements
	Progressive security
	Implementation
	Examples

	Discussion
	Comparison to current state
	Agreement
	Selection of features
	Feature removal

	Related work
	Conclusion
	References

