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Abstract—The official release of the latest version of the
Transport Layer Security (TLS) protocol, namely TLS 1.3, has
been accompanied by rapid adoption across the Web. In 2019,
Holz et al. set out to measure this adoption, i.e., deployment
and uptake of the protocol (CoRR 2019). Whilst informative
and undeniably useful for the TLS community, Holz et al. note
that they were unable to measure some of the newer features
of TLS 1.3, including zero round-trip time (0-RTT) and post-
handshake authentication (PHA). The altered structure of TLS
1.3, with more encryption of the handshake, renders measurement
of these features impossible via passive monitoring and Internet
scanning. Access to client-side TLS telemetry enables our work
to address these limitations, and presents a clearer view of the
TLS 1.3 adoption landscape. Specifically, our work comments
on the true acceptance rate of client-generated early data, and
on the odd usage patterns surrounding client authentication
that occurs post-handshake. Our work also presents an up-to-
date measurement of TLS 1.3 deployment, both confirming and
extending the predictions and results presented by Holz et al.

Keywords—TLS, client-side measurement, zero round-trip time,
post-handshake authentication

I. INTRODUCTION

The Transport Layer Security (TLS) protocol has recently
endured a major technical overhaul, both in terms of security
and performance. In August of 2018, after a highly collabora-
tive and iterative design process [1], the Internet Engineering
Task Force (IETF) released TLS 1.3, the latest version of the
protocol [2]. In order to avoid known protocol weaknesses
and improve performance, the TLS Working Group reduced
the round-trip time of the TLS handshake, and improved its
security offering via the inclusion of state-of-the-art crypto-
graphic mechanisms. Consequently, the latest version of the
protocol has new features, including a zero round-trip time (0-
RTT) handshake mode, a post-handshake authentication (PHA)
feature, and a new, reduced set of cipher suites.

Given the iterative nature of the TLS 1.3 development
process, early drafts of the protocol were implemented by some
of the larger Internet corporations and organisations, mostly
in an experimental fashion. For instance, the CDN provider
Cloudflare enabled support for TLS 1.3 in September of 2016
[3], and Mozilla and Google enabled TLS 1.3 in Firefox [4]
and Chrome, respectively, in 2017. This pre-emptive testing
set the stage for early adoption of the revised protocol, and
shortly after its official release in August of 2018, Holz et al.
conducted a measurement study of TLS 1.3 usage across the
Web [5]. Although perhaps early as an adoption study – the
work was conducted in April and May of 2019 – the authors
did find strong support for TLS 1.3, which was, however,
clearly linked to large Internet companies pushing the protocol
on the Web.

The data gathering process of Holz et al. needed to rely
on large-scale Internet scans, passive traffic observations, and

the Lumen Privacy Monitor [6] dataset (for Android ecosystem
data). Although perfectly acceptable, and in fact commonplace
in Internet measurement work, the nature of the revised TLS
handshake rendered a complete measurement of the newer
features of TLS 1.3 impossible. Specifically, encryption of
handshake messages from early on in the handshake meant that
the success rate of the 0-RTT feature could not be measured
by the aforementioned methods, and also that use of the PHA
feature was invisible and hence also not measurable. It is this
gap that we aim to fill with our work – having a unique
client-side perspective of TLS 1.3 connections allows us to
step inside the handshake encryption barrier.

A. Contributions

In this work we build on the work presented by Holz et al.
and we comment on (i) how the TLS 1.3 adoption landscape
has changed since the publication of [5], and (ii) the features
that could not be covered by Holz et al., specifically, 0-RTT
and PHA. Notably, our work presents a client-side perspective
of TLS 1.3 adoption and usage. The scanning techniques in [5]
focus on domains and server-side behaviour, and the passive
monitoring of TLS traffic via the ICSI SSL Notary [7] together
with some supplemental observation in Australia, only gives a
partial view of client-side behaviour. Holz et al. note in their
work that it is not possible to quickly adapt the ICSI Notary
infrastructure to collect data on new features in TLS, and as
alluded to previously, only being able to passively monitor
connections, without access to encrypted handshake messages,
means that usage surrounding new features cannot be fully
measured.

With access to Firefox telemetry and the means to measure
client-side TLS behaviour from within the client, our work
extends the results of Holz et al. Using the Firefox telemetry
dataset,1 we report on the following from the Firefox view-
point: the TLS 1.3 adoption rate, TLS 1.3 cipher suite usage,
0-RTT usage, and PHA uptake. In order to measure the latter
two features, we extend the Firefox telemetry functionality by
landing new probes in Firefox. Over a 12-month measurement
period extending from November, 2020 to November, 2021,
we observe TLS 1.3 as the preferred version of choice with
over 50% of Firefox TLS connections making use of TLS 1.3
in November 2021.2 In the Holz et al. study, the authors found
that 4.6% of connections negotiated TLS 1.3 and just under
40% of clients advertised support of TLS 1.3. More than two
years on we see confirmation of the expected rapid adoption
of TLS 1.3.

1In this study we report on data across all Firefox channels, i.e., Nightly,
Beta and Release. Of these, Release is by far the largest channel with over
200 million users. For reference, Beta users total in the region of 2 million
and Nightly is at 5% of this figure.

2Encouragingly, recent telemetry indicates that just over 93% of all Firefox
HTTP connections are run over TLS.



Of the three recommended TLS 1.3 cipher suites, we
observe the greatest support for the AES variants, with 128-bit
AES in GCM dominating in Firefox for desktop (at 82.69%
of connections). This is in line with the findings by Holz et al.
We note that our dataset does not extend to Firefox on mobile;
cipher suite usage may indeed differ on mobile platforms.

In the case of the 0-RTT feature, we observe that in
November 2021, 11.39% of Firefox TLS 1.3 connections
signal the desire to send early data and that this early data
is accepted in 98.20% of these cases. In [5], the authors were
able to measure when early data was indicated but were not
able to capture when early data was accepted.

When it comes to PHA, over our measurement period,
daily PHA occurrences vary but are extremely low when com-
pared to the total number of TLS 1.3 connections observed.
Interestingly, however, for the connections observed, all client
authentication is performed post-handshake and the feature
exhibits “spike” behaviour, which we hypothesise corresponds
to organisations and enterprises rolling out services that require
client authentication.

The results presented in [5] paint a picture of TLS 1.3
adoption shortly after its official release. Our work updates
this view to reflect the adoption status more than two years
hence, and also uses a unique client-side position to report
on the real-world usage of the newer, distinctive features of
TLS, namely 0-RTT and PHA. To our knowledge, our work
is the first to examine TLS 1.3 usage purely from a client-side
perspective, and can be thought of as a companion piece to
[5], both confirming and extending the results and insights put
forward in that work. Having a clear and and current view of
TLS 1.3 adoption and feature usage is not only of benefit to
browser manufacturers and other industry actors but it is also
of use to the broader TLS research community.

II. RELATED WORK

As discussed above, Holz et al. [5] capture TLS 1.3 adop-
tion shortly after official release of the standard. Specifically,
they deploy Internet scanning techniques to look at TLS 1.3
usage at the domain level, finding that large front-end hosting
services such as Cloudflare account for much of the TLS
1.3 adoption observed, and that many connections on mobile
platforms can be attributed to organisations such a Google and
Facebook deploying TLS 1.3. Through passive monitoring of
TLS connections, the authors of [5] attempt to measure the
newer features of TLS 1.3, not quite managing to comment
on 0-RTT usage and the prevalence of PHA, due to more of
the TLS 1.3 handshake being encrypted. Our work fills this
gap. At the time of their work in April of 2019, the authors
of [5] observed a TLS 1.3 adoption rate of 4.6% across the
Web, with just under 40% of clients offering support for TLS
1.3 (note that is this includes earlier variants of TLS 1.3, and
not only the finalised protocol).

In their follow up paper [8], Holz et al. extend their
measurement period to the end of 2019, and more solemnly
discuss the phenomenon of centralization of the Web as a
driver for change, again noting that key developments on the
Web, such as TLS 1.3 roll-out, are seemingly dictated by a few
large and dominant players in the space. At the end of 2019,

TLS 1.3 adoption is cited as coming in at just under 20% in
[8].

Work by Lee et al. [9], examines TLS 1.3 adoption by
observing connections to the top 1M Alexa websites, also in-
corporating measurement on TLS 1.3 handshake performance
and TLS 1.3 implementation effectiveness across clients and
servers. Lee et al. confirm the centralized adoption findings
of Holz et al., and at the end of their measurement period in
December 2020, they observe TLS 1.3 adoption at just over
48%, for their dataset.

To date, works examining the various aspects of TLS 1.3
adoption are few in number. Previous work by Kotzais et al.
[10] presents a longitudinal study of TLS deployment over a
five-year period. Only a very brief mention of TLS 1.3 is made
– at the time of the study, April 2018, only 1% of observed
connections were making use of (early variants of) TLS 1.3.

In contrast to the works mentioned above, our unique
client-side position allows us to more closely examine client
behaviour when it comes to TLS 1.3, and allows us to report on
the usage of features that are no longer visible to researchers
needing to rely on passive monitoring of TLS connections. A
few studies in the area discuss TLS 1.3 adoption in the mobile
setting [5], [6], [8]. At this stage, our work does not do this but
can be thought of as complementing all of the aforementioned
efforts.

III. BACKGROUND

TLS 1.3 optimises for both security and speed by using
state-of-the-art cryptographic primitives in its allowable cipher
suites, and by offering a reduced round-trip time in all of
its handshake modes. TLS 1.2 and below require two round-
trips before the client can start sending application data [11]–
[13]. In TLS 1.3, this occurs after one round-trip in an initial
handshake, and as part of the client’s first message flight in
a 0-RTT handshake. Early data can be sent by the client if
both the client and the server have agreed on a pre-shared key
(PSK), either as part of an initial handshake, or via an out-of-
band mechanism. The transmission of early data as part of a
0-RTT handshake does carry certain security risks: the data is
not forward secure, i.e., the data is not protected against future
compromise of the PSK used to protect it, and replays of the
data across connections are possible. In terms of handshake
mechanics, when the client sends early data, it sends this
encrypted data along with its ClientHello message and
an EarlyDataIndication value in the ClientHello
extensions field, signalling to the server that early data is
present. As the ClientHello extensions are not encrypted,
this EarlyDataIndication value is visible to passive
observers, and hence can be captured by infrastructure that
passively monitors TLS connections, as was done by Holz
et al. in [5]. If a server chooses to accept and process the
early data, it will send its own indication value as part of its
EncryptedExtensions message. As this is not part of the
visible ServerHello extensions field, this indication of ac-
ceptance is not available to passive observers. Additionally, in
an initial handshake between the client and the server, if a PSK
is established for the purposes of session resumption, which is
done via a NewSessionTicket message, the server will
indicate whether or not this PSK may be used for early



data purposes. However, the NewSessionTicket (NST)
message is encrypted under the newly established application
data keys and is also not visible to passive onlookers.

Besides allowing for client authentication within the hand-
shake, as is the case in TLS 1.2 and below, TLS 1.3
also allows for client authentication post-handshake, i.e., at
any time after an initial handshake has successfully com-
pleted. A server requests this form of client authentica-
tion by sending a CertificateRequest message to the
client. To go ahead with the authentication, a client re-
sponds with Certificate, CertificateVerify and
Finished messages. Willingness of a client to perform
post-handshake client authentication can be viewed in the
unencrypted ClientHello extensions field but again, as
the server request for authentication, as well as the client’s
response, is encrypted, it is not possible for passive monitoring
infrastructure to measure usage of this feature. Cremers et
al. [14] point out that the PHA authentication feature fails to
provide strong authentication guarantees – as the server is able
to accept or reject client authentication done in this fashion
“silently”, it is possible that the client and the server are not
in agreement regarding the client’s authentication status. This
may have consequences at the application layer, potentially
resulting in sensitive information being transmitted by a client
assuming authenticated status, and a server handling (possibly
storing) this information as if this is not the case.

In order to ensure the use of state-of-the-art data protection
mechanisms, the TLS 1.3 specification greatly reduces the
number of cipher suites available to the client and the server.
All symmetric encryption algorithms are of the authenticated
encryption with associated data (AEAD) type, and all key
exchange mechanisms are forward secure – static key exchange
algorithms have been removed. The TLS 1.3 specification indi-
cates that at a very minimum, TLS_AES_128_GCM_SHA256
be implemented, and TLS_AES_256_GCM_SHA384 and
TLS_CHACHA20_POLY1305_SHA256 are highly recom-
mended for implementation. The hash function indicated in
each cipher suite is for use in TLS 1.3 key derivation.
Cipher suite negotiation is handled via the exchange of
ClientHello and ServerHello messages, and is visible
to a passive observer.

IV. DATA COLLECTION

In this section we describe our data collection process and
what differentiates it from the data collection processes of
previous works.

A. Mozilla Probe Dictionary

To collect our data, we use the Mozilla probe dictionary
[15]. This a collection of all telemetry probes for Firefox.
It provides insight into real-world user behaviour and allows
us look at the TLS handshake from a client-side perspective.
As the client, Firefox has access to the unencrypted TLS
1.3 handshake and the probe dictionary can therefore collect
information about it. This is an advantage over the standard
data collection method of passive monitoring, which can only
monitor the handshake as an outside observer. The probe
dictionary makes use of an SQL tool called Redash which
can be used to access the collected data at a granular level.

Of course, such a dataset only provides detailed information
from the client-side viewpoint of the TLS ecosystem. Using
our data, we cannot make concrete assumptions about server-
side behaviour.

Most of the data we use is accessible to the public.
However, our research relationship with Mozilla puts us in
a unique position to work with this data. Access to Mozilla’s
internal tooling allows us to filter the data and to examine it
more closely, with more context. Additionally, we also have
the luxury of adding new probes to Firefox, so as to measure
the new features of TLS 1.3.

We note, however, that our resulting dataset is publicly
available – the data can be accessed via the Mozilla probe
dictionary by querying the probes that we land in Firefox.
Also, we believe that this study is easily reproducible by any
researchers wishing to work with Firefox data, given Mozilla’s
willingness to work with external researchers.

B. New Probes

The probe dictionary collects telemetry on almost every
aspect of the TLS handshake, however, some of the newer
features of TLS 1.3 were not accounted for at the commence-
ment of our study. We specifically wanted to focus on the
0-RTT and PHA features since previous studies were unable
to concretely measure these features. This is due to the early
handshake encryption barrier established by TLS 1.3 – many
of the feature indicators are protected by either handshake or
application data traffic keys and hence are not observable to
passive monitors, as is the case in the Holz et al. work [5], [8].
Our unique client-side position, however, allows us to inspect
these features. In order to measure 0-RTT and PHA feature
usage in the wild, we land two new probes in Firefox. These
probes send a ping back to the Mozilla telemetry dataset when
events associated with the relevant feature occur within a TLS
1.3 connection. All our probes do is record and increase a count
– we are not able to observe the contents of encrypted data,
and nor are we capable of discerning browsing destination or
identifiable information pertaining to the client.

1) 0-RTT: For the purposes of our 0-RTT probe, we
distinguish four different types of 0-RTT status: not possi-
ble, possible, used, and accepted. Each TLS 1.3 connection
observed gets classified into one or more of these states. The
first state, not possible, is used for TLS 1.3 connections that
are not able to make use of the 0-RTT feature. This includes
all initial connections that do not involve a PSK handshake.
It also includes PSK handshakes for which the PSK has not
been signalled for use with early data. In Firefox, it is also
possible for users to disable the 0-RTT feature by adjusting
their browser preferences. Connections for which this has been
done will also be captured in this group. The second group,
possible, includes all TLS 1.3 connections where it is possible
to send early data. This state includes all connections for
which the PSK in question has been signalled for use with
early data, as indicated in the associated NST message.3 The
third group, used, includes connections in which early data is
actually sent; just because 0-RTT is possible for a connection
does not mean that the feature is actually used. The fourth

3This can also be done via a PSK shared out-of-band but in Firefox this
functionality does not appear to operational just yet.



group, accepted, collects a count of all the TLS 1.3 connections
in which the server accepts the early data. This last group
is the most interesting as it represents the 0-RTT acceptance
rate, something which previous studies have been unable to
measure. Note that if a connection is recorded in the accepted
group, then this means that it is also used and was therefore
possible.

2) PHA: As described in Section III, the PHA feature
is an extension of the TLS client authentication mechanism.
This feature adds the option for the server to request and
subsequently receive client authentication messages at any
point after an initial TLS 1.3 handshake has completed. Again,
as the PHA messages are encrypted under application data
traffic keys, they are not visible to passive onlookers and thus
this feature has not been measured by previous works.

Our unique client-side position allows us to measure usage
of this feature. In order to set up our probe, we needed to
carefully consider where to place the relevant code: Firefox
makes use of a third party library, Network Security Services
(NSS) [16], to handle many aspects of the TLS handshake.
This includes traditional client authentication as well as PHA
(in fact, the same code is called to complete both types
of authentication). Since NSS is not compiled with Firefox,
we were not able to directly land a probe at the applicable
invocation point of the PHA feature. However, within Firefox,
we are able to observe when (i) client authentication has
completed and (ii) when an initial, full handshake has com-
pleted. Therefore, to measure occurrences of PHA, for each
connection we measure the relative occurrence of these two
events. When we notice that client authentication has occurred,
we retrospectively examine the connection for completion of
an initial handshake; our probe is set up to allow for this.

C. Ethical Considerations

Our probes reveal nothing about the contents of the en-
crypted data that we monitor – they merely serve to increase
a count value regarding when certain events are triggered on a
TLS 1.3 connection. Our data can in no way be used to discern
individual user browsing behaviour or fingerprint individual
clients. We say more about our ethical data collection practices
in Appendix A.

D. A Different Data Slice

In comparison to previous works, our data concerns TLS
1.3 usage from the perspective of a single browser, Firefox.
As noted above, being able to monitor handshake events from
within the client allows for us to gain further insights into
the prevalence and usage of the newer features of TLS 1.3
on the Web but it does not explicitly allow us to comment on
server-side behaviour. We can possibly infer certain ecosystem
behaviours and trends but we cannot do so from the perspective
of differing clients connecting to many servers, as is the case
in previous works [5], [8], [9]. However, our perspective is not
limited to the narrow population segment that is covered by
the SSL Notary, which is predominantly institutions of higher
learning. Our data covers a much larger slice of the population,
capturing a wider class of use cases and user behaviours. We
believe that our work complements these prior works and
their associated methodologies – in combination with these

efforts, our work helps to broaden the understanding of TLS
1.3 deployment on the Web.

V. RESULTS

In this section we outline our findings. We start by looking
at the adoption data collected for TLS 1.3, and then go into
detail regarding the 0-RTT and PHA features. For this analysis
we cover only Firefox on desktop. Our dataset is restricted
in this way due to the limited telemetry gathering machinery
available for Firefox on mobile platforms.

A. TLS 1.3 Adoption

Due to an iterative development process, spanning four
years, many large vendors already had TLS 1.3 implemen-
tations before the official release of the protocol in August
2018. Comparing the usage numbers for the differing TLS
versions on Firefox, we notice that TLS 1.3 currently displays
the highest usage share: just prior to the commencement of
our official measurement period, in October of 2020, TLS
1.3 surpassed the 50% mark on Firefox desktop, and over
our official 12-month measurement period extending from
November 2020 to November 2021, we observe TLS 1.3 as
the preferred version of choice with 57.23% of Firefox TLS
connections making use of TLS 1.3 in November, 2021. Figure
1 depicts TLS version usage in Firefox.

Fig. 1. TLS version usage in Firefox

Also in October of 2020, TLS 1.3 surpassed TLS 1.2 as
the most used version of TLS on Firefox. Perhaps unsurpris-
ingly, given the deprecation effort by various browser vendors
surrounding TLS 1.0 and 1.1, we see almost no usage at all
of these versions, as is visible in Figure 1. The deprecation
effort started in mid-2020, with Mozilla initiating deprecation
on June 30th, 2020 [17]. All other major browser vendors
followed shortly thereafter, with Google doing so for Chrome
on July 14th, 2020 [18] and Microsoft for Edge on July 16th,
2020 [19]. This deprecation came after a long period of decline
for both versions; at the point of deprecation both versions
combined only made up 0.3% of connections in Firefox.

Looking at the usage results, we note that TLS 1.3 has
enjoyed a much faster adoption rate than TLS 1.2. This
immediate predecessor took six years to reach a 50% usage
share on Firefox, which is three times as long as TLS 1.3 took
to hit the same target on the browser. This is undoubtedly
due to the prolonged development process of TLS 1.3, as
also argued in [8] and [9]; most browsers, large websites, and



hosting providers already had TLS 1.3 draft implementations
at the point of official release. Over our measurement period,
as displayed in Figure 1, we notice a gentle increase in TLS 1.3
usage as TLS 1.2 looses usage share. Although still enjoying
an evident increase in adoption, we posit that it is possible that
TLS 1.3 adoption may stabilise or “level-off” over the coming
months. In April 2019, the Holz et al. study reports 4.6% of
connections negotiating TLS 1.3 and just under 40% of clients
advertising support of TLS 1.3. Their updated work reported
a TLS 1.3 usage number of just under 20% in November
2019. A year on from that, in November 2020, Lee et al.
[9] report a TLS 1.3 adoption figure of just over 48%. Our
figure of 57.23%, yet another year on, confirms the expected
early, rapid adoption of TLS 1.3, but in the light of all of the
aforementioned data points suggests a slowing down of the
TLS 1.3 adoption rate across the Web. It is possible that the
larger organisations credited with driving the fast pace of TLS
1.3 adoption have done all they can for TLS 1.3 within the
TLS ecosystem, and as with previous versions of the protocol
the “tail-end” of the Web will take a while to catch up.

B. TLS Cipher Suites

Cipher suites are essential to the security offering of TLS.
With regards to TLS 1.3 cipher suites, which only allow
for the use of state-of-the-art cryptographic mechanisms
(AEAD algorithms and forward-secure key exchange),
Figure 2 captures our observations for the measurement
period in question. Of the three recommended TLS 1.3
cipher suites, we see the greatest support for the AES
variants, with 82.69% and 17.24% of TLS 1.3 connections
making use of TLS_AES_128_GCM_SHA256 and
TLS_AES_256_GCM_SHA384, respectively, in November
2021. Use of TLS_CHACHA20_POLY1305_SHA256
is very low in Firefox at 0.07% of connections.
This is perhaps surprising, however, we note that
TLS_CHACHA20_POLY1305_SHA256 is not a mandatory
TLS 1.3 cipher suite, and that our measurements only capture
Firefox for desktop; usage figures may differ for Firefox on
mobile. Also, use of ChaCha20-Poly1305 was, and still is,
very low in TLS 1.2 for Firefox desktop (1.13% of TLS 1.2
connections), which may also contribute to its lack of use
in TLS 1.3; ecosystem inertia may potentially have a role to
play.

Fig. 2. TLS 1.3 cipher suite usage in Firefox

In terms of TLS 1.3 cipher suites, Holz et al. [5], [8] found
that TLS_AES_128_GCM_SHA256 was used in 79.2% of

connections, TLS_AES_256_GCM_SHA384 in 14.4% of
connections, and TLS_CHACHA20_POLY1305_SHA256
in 6.4% of connections. These measurements are
very similar to ours but much higher usage of
TLS_CHACHA20_POLY1305_SHA256 was observed,
likely due to the fact that their dataset covered a spread of
varying clients, and not only Firefox.

C. 0-RTT

The new 0-RTT feature of TLS 1.3 allows the client to
send encrypted application data as part of its first message
flight. This is part of the session resumption handshake and
uses a cryptographic key, a PSK, from the previous session
to encrypt the early data. Previous works were not able to
fully observe this feature in the wild since it is hidden behind
the handshake encryption barrier of TLS 1.3, and hence is not
visible to passive observers. Our unique client-side perspective
allow us to observe usage of this feature more readily (and as
stated in Section IV, we are not able to, and nor do we wish
to, know the contents of the encrypted data).

In order to understand the usage of 0-RTT, we collect
different kinds of data, as shown in Figures 3 and 4. We
first collect the number of TLS 1.3 connections in which it is
possible to make use of the 0-RTT feature (“0-RTT possible”
in Figure 3). This means that the server has indicated that the
PSK in question can be used for early data purposes (but no
guarantee is given that the server will accept this data). This
stands at 11.82% in November 2021. We speculate that the dip
in 0-RTT usage starting in August 2021 is likely a result of
increased TLS 1.3 adoption (from August 2021) without the
associated increase in 0-RTT support. Perhaps more servers
switched to supporting TLS 1.3 but did not enable 0-RTT
functionality for a few months; from October 2021 we see an
uptick in the usage numbers. However, as we did not complete
a dedicated server-side study, this remains speculation on our
part. Our second measurement captures the percentage of TLS
1.3 connections where 0-RTT is used, meaning that Firefox
sends early data (“0-RTT used”). This occurs in 96.40% of
0-RTT-possible connections, and in 11.39% of all TLS 1.3
connections. Finally, we record the number of connections
where 0-RTT is accepted by the server (“0-RTT accepted”).
This extends the work done by Holz et al. , which was
not able to measure the acceptance rate of 0-RTT data. We
find that in 98.20% of connections where early data is sent,
it is also accepted. This means that in 11.19% of all TLS
1.3 connections made by Firefox, early data is sent and also
accepted.

Over our measurement period, we notice a doubling of the
cases in which 0-RTT is possible. This potentially indicates a
change in server behaviour when it comes to allowing for early
data, however, it may also indicate an increase in the number
of connections to servers which already allow for early data.
In [5], Holz et al. note a measurement of 6.8% of TLS 1.3
connections in which clients send early data. Two years on,
our data for one browser indicates an increase of the number
of early data connections on the Web.

D. PHA

The second TLS 1.3 feature that we examine more closely
is the PHA feature. This feature allows a client to authenticate



Fig. 3. 0-RTT usage in Firefox

Fig. 4. 0-RTT “used” and “accepted” in Firefox

at any point after an initial TLS 1.3 handshake has occurred.
Again, this feature is not observable via passive monitoring as
the associated messages are encrypted under the application
data traffic keys established during the handshake.

Interestingly, for the Firefox connections observed, almost
all client authentication is performed post-handshake (we noted
only three connections in which this was not the case). Over
our measurement period, daily PHA occurrences vary, never
exceeding 6000. Compared to the total number of daily TLS
1.3 connections, which is in the region of 32 - 66 billion,
usage of this feature is extremely low. However, the feature
does exhibit “spike” behaviour. In October 2020, just prior
to the commencement of our official measurement period, we
observed the largest of these spikes with 5610 PHA occur-
rences in one day. We hypothesise that this behaviour coincides
with an organisation rolling out PHA to its entire staff and
requiring at least one connection to a service requiring client
authentication. Figure 5 displays PHA connection numbers
starting in September, 2020.

Fig. 5. PHA usage in Firefox

The spike behaviour continues over our entire measurement
period, with larger spikes again occurring between May and
July of this year. As far as we are aware, our work is the
first to measure usage of this feature in the wild. Our low
numbers also confirm that server authentication is the dominant
authentication use case for TLS on the Web.

VI. CONCLUSION

Our work extends previous TLS 1.3 measurement studies
by commenting on the usage of newer TLS 1.3 features in
the wild, something which previous efforts were not able to
do because of the altered structure of the TLS 1.3 handshake
– more encryption means less visibility to passive observers.
Being able to examine usage of these features from within the
client, a rather unique vantage point, paints a more colourful
picture of TLS 1.3 adoption across the Web. We believe that
having more information regarding the prevalence of 0-RTT
and PHA in the real-world is important given the security
risks associated with these features. Current efforts are under
way to eliminate the replay and non-forward secrecy risks
inherent to the 0-RTT mechanism [20]–[22], and not only do
our results inform these works but they also suggest that whilst
slowly climbing, the prevalence of 0-RTT on the Web is still
fairly low, which may be for the best given the aforementioned
security risks. At this stage, it is also encouraging to see low
usage of the PHA feature, specifically given the authentication
weakness highlighted by Cremers et al. [14], which may have
the potential to contribute to serious attacks against TLS 1.3.

Our results also indicate a potential stabilising of the TLS
1.3 landscape. Over our measurement period of 12 months, our
results stayed fairly constant across TLS version, cipher suite,
and 0-RTT usage. This may be because the centralisation of
the Web by large players, as posited by Holz et al. [5], [8]
and confirmed by Lee et al. [9], has done all that can for the
adoption of TLS 1.3 on the Web – as with years gone by, less
popular sites and servers will lag behind.

To our knowledge, ours is the first work to comment on
TLS 1.3 adoption and feature usage from within the client-
side encryption barrier. We believe that our work complements
previous works and also feel that a coordinated, longitudinal
study by additional browser vendors and researchers alike
would make for interesting future work.
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APPENDIX A
ETHICAL DATA COLLECTION

Mozilla is a privacy-focused organisation. Therefore,
telemetry and data collection are governed by strict guidelines.
These guidelines ensure that if users agree to data collection,
that no personally identifiable information or other privacy-
sensitive data is recorded. Mozilla’s internal data collection
policy is built upon four major principles: necessity, privacy,
transparency and accountability. Necessity implies that only
the amount of data that is needed is collected. For every bit
of data collected there also has to be a clear business, or in
this case research, need. It also means that many telemetry
probes get deactivated after a certain time period. In our case,
as we performed a long running study, our probes are still
active, however, they are due to expire in early 2022. Privacy
means that users have the ability to choose what data, if any, is
collected. All Firefox telemetry probes are “opt-out” enabled,
and therefore the user has control over his or her data. A user
may opt out of telemetry probes via the browser preference
settings. The transparency principle forces Mozilla to make all
data collection decisions public so as to create an environment
where nothing is hidden from the user. This also includes
making the telemetry probes accessible to everyone via the
telemetry dashboard [15]. Lastly, accountability means that for
each telemetry probe there is at least one Mozilla employee
that is responsible for, and aware of, the data.

To ensure that the above goals are met, Mozilla requires a
data review to be performed for all new telemetry probes to be
added to Firefox. Internal data stewards then approve, deny or
request changes to the planned probes. For the purposes of this
work, each of our probes underwent a data review and were
approved in August 2020. Our probes can in no way be used
to fingerprint clients or discern individual client behaviour –
we merely collect counts for the observed 0-RTT and PHA
events.


