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Abstract—A variety of attacks, including phishing, remote-code
execution, server-side request forgery, and hostname redirection,
are delivered to users over the web. The beginning of most
of the web exploits is an innocent-looking URL. Malformed or
misinterpreted URLs can lead to remote code execution attacks
as well. The IETF and WHATWG standards organizations define
the components of a URL and act as an implementation guide
for URL parsers. They state which characters are allowed in
each portion of the URL and loosely suggest what to do in case
an undefined character is present in the URL. The existence of
two standards is the first concern, and the addition of server-side
request forgery in the latest version of OWASP Top 10, suggests
that neither of these standards is being followed accurately and
concisely. Moreover, neither of these specifications describe an
exact implementation standard, causing inconsistencies in the
way the various parsers interpret the same URL. For example,
malicious users can find ways to craft URLs to look like they are
pointing to one resource but actually direct the user to different
one. This problem is worsened when one application uses two
separate parsers for validation and resource fetching.

In this paper, we design a framework that unifies the testing
suites of 8 URL parsers from popular web-related projects
and highlights the inconsistencies between them. We examine
and dive deep into the URL parser implementation across the
most popular libraries, browsers, and command-line tools, and
discover many open areas for exploitation. Our findings include
identifying categories of inconsistencies, developing proof-of-
concept exploits, and highlighting the need for a comprehensive
implementation standard to be developed and enforced at the
earliest.

Index Terms—URL, parser, spoofing, web security, SSRF

I. INTRODUCTION

To make it possible for an individual to record the location
of a document, the World Wide Web associates each page of
information with a unique identifier. The identifier consists of
a string of characters that can be recorded in a computer file,
written on a piece of paper, or sent to another person. An
identifier used to specify a particular page of web information
is called a Uniform Resource Locator (URL). When a browser
displays a page of information, it also displays the URL for the
page. In other words, URLs are the standardized names for the
Internet’s resources. They are the resource locations that the
browser needs to find pieces of electronic information. URLs
are the first human access point to the Internet: a user points a
browser at a URL, the browser sends the appropriate protocol
messages to get the resource that is requested. These are a
subset of a more general class of resource identifier called a
Uniform resource identifier (URI).

https://en.wikipedia.org/wiki/URL
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Fig. 1. How URLs relate to browser, machine, server, and location on the
server’s file-system

A URL may seem like a nonsensical collection of letters
and punctuation. However, the precise syntax conveys meaning
that a browser can use to retrieve a particular page, with-
out passing through other documents. Each URL uniformly
identifies a unique page of information by giving the name
of a remote computer, a server on that computer, and a
specific page of information available from that server. RFC
1738 [1] specifies the syntax and semantics of URLs, which is
updated by RFC 3968 [2] specifying the detailed syntax of the
super-set URIs. Figure 1 illustrates how the URL encodes the
information. The initial part of the URL specifies an access
protocol that tells the browser how to contact the remote
server. The domain name of the server on which the server
runs follows the colon and two slashes. Finally, a slash is used
to separate the computer name from the suffix that identifies
the specific item.

Although typical URLs have the same
scheme://server/location/path structure as shown in the
example in Figure 1, not all URLs follow the same form.
Moreover, although different libraries and tools parse URLs
accurately, it is plausible for the same URL to be parsed
differently by different tools. For example, many browsers
allow users to omit the protocol prefix; if no prefix is given,
the browser adds http:// to the URL. Such difference and
confusion in URL parsing can cause unexpected behavior in
the software or application, and could be exploited by threat
actors to cause denial-of-service conditions, information leaks,
host redirection, cache poisoning, or possibly conduct remote
code execution attacks. As a matter of fact, the Open Web
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Application Security Project (OWASP) added Server-side
Request Forgery (SSRF) into the 10th place of its top web
application vulnerabilities in 2021 [3]. SSRF mostly occurs if
the application is not handling a URL correctly. One reason
for incorrect handling of a URL is different ways of parsing
the URL with various tools and libraries. In this paper, we
measure how different libraries, tools, and applications parse
URLs and answer the following questions:

• Are there any differences in parsing the URLs by various
tools and libraries?

• If there are differences, are they security relevant?
• Are there libraries that follow RFC specification or the

WHATWG standard completely regarding parsing the
URLs?

Contributions: The following are our main contributions:

1) We developed a framework that given a URL (or a list of
URLs), outputs how each of the supported parsers would
parse the URL(s) into its components. The framework
also compares any pair of supported parsers, prioritizing
observed differences based on the same-origin-policy
(SOP) and other pre-determined rules.

2) We tested 8 URL parsers from different languages,
browsers, and tools written in 5 programming languages.
In total, we detected 4,262 inconsistencies with how
each of the tools parse the same URL to its basic
components.

3) We identify and categorize the most frequent parser
inconsistencies into 7 categories.

4) In the spirit of open-source, we have released our
framework code here: https://github.com/wspr-ncsu/
urlparsing-framework.

II. RELATED WORK

A. Academic Research

Reynolds et. al. [4] studied how well users can correctly de-
termine the host identity of real URLs from common services
and obfuscated ”look-alike” URLs. They found that only 40%
of obfuscated URLs were identified correctly, highlighting
several ways in which URLs were confusing to users. Ahmed
et. al. [5], and later Anitha et. al. [6], proposed a detection
technique of phishing websites based on checking URLs of
web pages. Several features were extracted from the URLs
such as presence of ”-” in the domain name, redirecting
to another site using the symbol ”//”, and URLs having
the presence of symbol ”@”. These works looked at URL
parsers but in the context of phishing. Qilang et. al. [7] tested
major browsers and URL scanners to expose the differences
on the way they parsing URLs. In the process they found
discrepancies in the way the browsers and scanners parse
URLs. In this work, we dig deeper into the parsers themselves
and propose a framework which will cross-evaluate parsers to
reveal inconsistencies between them. There has been no other
academic research that we are aware of on URL parsers, which
proves our discoveries and evaluations to be novel.

B. Blogs and Conferences

In 2016, Daniel Stenberg, the founder and lead developer of
curl wrote a blog [8] wherein he stated a couple of examples
to point out that ”There’s no unified URL standard and there’s
no work in progress towards that”. Following that, in 2017, he
published another blog [9] in which he highlighted the differ-
ences between the two specifications and urged the community
to converge on a single URL standard. This work takes this
one step further and shows the exact inconsistencies between
parsers, and thus the standards, through a framework. Wang et.
al. [10] combined URL parser issues with OAuth redirection
mechanism and discovered new exploitation techniques for
code/token stealing attacks and identified vulnerabilities in
several popular OAuth providers. While they exploited some
of the vulnerabilities arising from incorrect URL parsing, their
focus was not examining the parser implementation. The most
recent work shining light on how much impact incorrect URL
parsing can have is by Orange Tsai in his BlackHat talk in
2017 [11]. In this talk he shows how Server Side Request
Forgery attacks can be performed by taking advantage of
the inconsistencies between URL parsers. Following this, in
2017 and in 2018, Orange published blogs about how he used
this URL parser vulnerability, particularly abusing URL path
parameter, to performing Remote Code Execution on GitHub
Enterprise [12] and Amazon [13]. This work was inspired by
Orange’s contribution to SSRF, and by the astonishing fact
that there has been no prior academic research conducted in
this domain.

C. Concurrent Work

At the time of writing this paper, we discovered a re-
port [14] published online in January 2022 by an industrial
cybersecurity company called Claroty. In this report, the
authors performed similar research and manually examined
16 URL parsers. While our work focuses on discovering
inconsistencies and thus vulnerabilities using a framework,
their work only consists of manually finding vulnerabilities.
The framework that we introduce, the depth of tests, as
well as the corresponding analysis that we perform using
the framework, are things that increase the credibility and
impact of this work. It builds a foundation for discovering
more vulnerabilities in the future. This framework is designed
with scalability in mind so that more libraries and tools can
seamlessly be added in the future. The database of well-crafted
URLs will also increase correspondingly.

III. BACKGROUND

In this section, we describe URL components and the
standards that define URLs.

A. Uniform Resource Locator

Even though we use URLs whenever we try to navigate to
a website (http://), connect to a remote server (ssh://), transfer
files between machines (ftp://), or connect to a database
(mongodb://), we do not usually understand all parts of the
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URL and its intricacies. In this subsection, we briefly describe
the components of a URL.

In general, URL consists of five different components that
are defined by RFC-3986 that are shown in Figure III-A. The
exception to this rule is only when the URL is dealing with
special schemes such as javascript://, file:// and
others. At first, it may seem that parsing URLs into com-
ponents is not difficult. However, there are many challenges:
the existence of two different standards, the lack of an exact
algorithm on how to parse the URL in the initial versions
of the RFC standard, the ability to use the same character
sets in multiple URL components, the usage of identical
control sequence, eg. a colon (:) to separate components, and
backward compatibility issues. These challenges complicate
the development of parsers that can deal with the many types
of URLs.

The scheme is a protocol (algorithm) that should be used
to deal with the URL. It is specific to very specific to the
application.

The authority component of the URL consists of three parts:
user info, host, and port. User info is further divided into
username and password. Even though passing the password
in URL is deprecated in RFC-3986 due to security risks, it is
still widely used by other applications [15].

Web browsers implement Same-Origin-Policy to protect
data available on a website when accessed by another website.
Same-Origin-Policy, in short SOP, depends on the scheme,
host, and port components of the URL to determine if the two
different resources are from the same origin or not. Therefore,
incorrect parsing of URLs, especially in browsers, can have a
very significant impact on the entire security of the web.

Fig. 2. Examples of two URIs and their component parts. Ref: RFC 3968

B. WHATWG vs RFC

Currently, there exist two URL specifications, RFC 3986 [2]
by Network Working Group and WHATWG (Web Hypertext
Application Technology Working Group) [16], which try to
normalize how URLs should be interpreted. The existence
of two different standards, that sometimes conflict with each
other, further complicates the issue of correctly parsing the
URLs. Not only is it hard to follow both standards at the same
time, but it is also hard to follow a single standard thoroughly.

The RFC was developed before WHATWG and passed
several changes in its lifetime. There are six revisions (RFC-
1738, RFC-1808, RFC-2141, RFC-2396, RFC-2732, RFC-
3986) of URLs in the RFCs, the latest of which, RFC-
3986, was developed in 2005. Despite this, developers still

use deprecated features due to backward compatibility issues
as discussed in the previous subsection. On the other hand,
WHATWG came out first in 2012 and is constantly evolving
to include more features, edge cases, etc. This specification
aims to solidify URL parsing, aligning multiple RFCs, and
obsoleting them in the process. Most browsers today follow the
WHATWG specification while other libraries and command-
line tools follow RFC 3968 to implement their URL parsers.

C. Server-side Request Forgery

Incorrect parsing of the URL can enable different types
of attacks. The most prominent of them is Server-Side Re-
quest Forgery, in short SSRF, which was included in 2021
into OWASP TOP-10 [3]. SSRF is a type of attack that
exploits the trust between servers. For example, a backend
server can assume that every request that is coming from
the application server is trusted, and will thus serve some
confidential information. Usually, developers employ allow-
lists to protect applications from SSRF. However, this defense
can be circumvented if the parts of the code base uses different
parsers for URL parsing, e.g., the validation section of the code
parses URLs differently than the code that issues the request.
In this case, the attacker can issue unauthorized requests by
crafting a malicious URL [17], [18].

IV. EXPERIMENTAL METHODOLOGY

A. Identifying URL parsers

We crawled through the CWE and CVE databases [19]–
[26] to identify the types of vulnerabilities existing among
URL parsers. Using this information and based upon GitHub
repository maintenance, contributors, and users, we identified
the most popular URL parser libraries across programming
languages. Table II in Appendix A shows a list of parsers
and tools we used to test for URL parsing inconsistencies. We
retrieved URL inputs from test suites of these libraries/tools
in a semi-automated fashion by hooking them into the test
framework code. Next, we crawled through the GitHub issues
for those libraries, and 3 of the most popular browsers -
Chrome, Mozilla, and Safari. Thereafter, from that list of
vulnerabilities, as shown in Section V, we identified the most
exploitable categories of these URL parsers, eg. insufficient
URL sanitization, incorrect handling of confusable characters,
incorrect handling of scheme, insufficient encoding, etc. Fi-
nally, we shortlisted the parsers we could extensively test and
explore, based on their code being publicly available. [27]–
[37]

B. The Framework

To test the parsers thoroughly, we needed a large corpus
of URLs. We developed a framework that extracts this corpus
from parsers test-suites, performs cross-testing of parsers, and
reports on discovered bugs and inconsistencies. The frame-
work performs the two main steps as shown in Figure IV-A.

Test Extraction. Since all of the parsers are widely used,
we suspect they must be extensively tested. We hooked into
test suites of each of the parsers by modifying a few code
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Fig. 3. Figure shows high-level architecture of our framework. The framework
consists of mainly two parts, which are: (1) semi-automated pre-process step
that generates uniform JSON files from existing test suites; (2) cross-testing
part, which feeds inputs from JSON file into tools and detects differences
from expected output

lines. Then the framework runs the respective parser’s test-
suites [38]–[47], and extracts the test URLs along with the
parsed components into a JSON file. The framework stores
the URLs from each test suite in individual files as well as in
one large JSON file to create a database of URLs. Since testing
suites usually contain all types of malicious and safe URLs,
covering all the previous CVEs reported for their parser, we
assume that this database is quite exhaustive.

Cross Testing. The next step is to cross-test the different
parsers. This means that the input URL in the JSON file
of one parser is tested using another parser. The outputs of
both the parsers are then compared to find inconsistencies.
These differences are prioritized based on pre-determined rules
as listed in Appendix A. The highest priority is given to
inconsistencies in the same-origin-policy, which is tuple of
(scheme, hostname, port). We use these prioritized differences
for further analysis (Section V).

C. Analysis

For each parser, we analyze the differences to find potential
security issues. We categorize the security issues into 7 number
of categories as described in Section V. Finally, we shortlist a
set of URLs that are most inconsistently parsed across parsers
to create a URLs of Interest database. This shortlist is created
to reduce the number of similar URLs as well as to document a
set of URLs most likely to be abused by an adversary. Section
V gives examples of some of these URLs. The framework is
also used to check inconsistencies and inaccuracies between
parsers and specifications.

V. RESULTS

A. Statistics

As discussed in the previous section, we examined a total
of 8 parsers, written in different programming languages. We
extracted 1,445 URLs from their testing suites which we used
in our dataset during cross-testing. The results of the cross-
tests are highlighted in Table I. After analyzing the inconsistent
behavior, we classified the differences into seven categories

(see below). The framework discovered 4,262 inconsistencies
among the parsers, of which 56% were differences in the SOP.
These details are available in Table I. One observation is that
whatwg-url is more restrictive compared to other parsers.
Therefore, it throws an error whenever the URL is incorrect,
e.g., misses scheme, instead of relying on the default value.

B. Test Results

Using the framework, we found hundreds of inconsistencies
among the examined parsers. After analyzing these incon-
sistencies, we categorized them into 7 categories, which can
be viewed as the root causes of these differences. Using the
categorizations, we can exploit parsers and combinations of
parsers to cause unpredictable behavior, resulting in a wide
range of vulnerabilities.

Since the URL syntax is complex, many edge-cases can be
introduced to cause misinterpretation and malicious behavior.
Sometimes, the specifications fail to clearly define how to
handle the edge cases. Other times, there are discrepancies
between the two specifications. We further describe the cate-
gories that the inconsistencies arise from due to the mishandled
edge cases.

1) Hostname confusion: This type of inconsistency occurs
when URL parsers set the hostname component for the same
URL to different values. For example,

URL http:\\\\a\\b:c\\d@foo.com\\
Chrome, whatwg-url, url-parse host: a
cURL host: foo.com
Urllib, urllib3, PHP, uri-js path: \\\\a\\b:c\\d@foo.com\\

Another classic example that enables a redirect attack is
shown in the table below. Despite CVE-2020-26291 [48] being
reported an fixed on Node.js’ uri-js library [29], we were
surprised to see that many other parsers still haven’t fixed this
vulnerability in their parsers, including other popular Node.js
libraries.

URL http://google.com:80\\@yahoo.com
Chrome, urllib3, url-parse, whatwg-url host: google.com
Urllib, uri-js, PHP, cURL host: yahoo.com

These hostname inconsistencies can lead to hostname spoof-
ing attacks, URL redirection attacks [20], and SSRF attacks
[19].

2) Scheme confusion: RFC 3986 [2] mandates the presence
of a scheme in a URL for it to be valid. When a scheme is not
mentioned in the URL, some parsers assume a default scheme
HTTP, while others consider the URL as a path, which is
correct as per the RFC standard. For example,

URL foo/bar
Chrome, urllib, cURL host: foo
Urllib, PHP, url-parse, uri-js path: foo/bar
Whatwg-url Error

When a valid (well-known) scheme is not present, and there
is a colon in the URL, some parsers assume everything up until
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Inputs from following tools / libraries. (Differences / Identical / Errors)
chrome (162) php (124) urllib (164) urllib3 (150) url-parse (136) uri-js (212) whatwg-url (497)

chrome 60 / 64 / 0 131 / 33 / 0 91 / 59 / 0 112 / 24 / 0 69 / 143 / 0 440 / 57 / 0
php 76 / 86 / 24 88 / 76 / 4 81 / 69 / 4 64 / 72 6 87 / 125 / 3 405 / 92 / 0
urllib 77 85 / 0 29 / 95 / 0 81 / 69 / 0 82 / 54 / 0 76 / 136 / 0 413 / 84 / 0
urllib3 97 / 65 / 24 53 / 71 / 8 104 / 60 / 5 93 / 43 / 0 123 / 89 / 0 407 / 90 / 0
url-parse 64 / 60 / 0 64 / 98 / 0 94 / 70 / 0 80 / 70 / 2 95 / 117 / 0 290 / 207 / 0
uri-js 33 / 91 / 0 76 / 86 / 0 66 / 98 / 0 40 / 110 / 0 62 / 74 / 0 320 / 177 / 0
whatwg-url 80 / 44 / 48 82 / 80 / 58 108 / 56 / 84 88 / 62 / 35 41 / 95 / 32 144 / 71 / 75

TABLE I
THE TABLE SHOWS DIFFERENCES IN PARSING URLS IN CROSS TESTING. THE COLUMN SHOWS CORRESPONDING TEST FROM TOOL, WHILE THE ROW
SHOWS THE NAME OF THE LIBRARIES THAT ARE TESTED. NOTE THAT THE NUMBER OF DIFFERENCES ALSO INCLUDE NUMBER OF TIMES THE PARSE

THREW ERROR AND FAILED TO PARSE THE URL

the colon is the scheme. Other parsers exhibit unpredictable
behavior. For example,

URL www.php.net:80/index.php?test=1
Urllib, url-parse, uri-js, whatwg-url scheme: www.php.net, host: empty
Urllib3, PHP, cURL scheme: empty, host: www.php.net

Adversaries can abuse this inconsistency to bypass valida-
tion checks against certain hosts [49].

3) Control Characters confusion: The specification does
not allow control characters like backspace, vertical tab, hor-
izontal tab, line feed, etc in the URL. If these characters are
present in the URL, they must always be percentage-encoded.
However, a variety of peculiar behavior is observed among
URL parsers. As displayed in the examples below, Chrome
and Node.js’ url-parse interpret the control characters as they
are. Python’s urllib3 library and Node.js’ uri-js library encode
them as expected. On the other hand, Python’s urllib library
and Node.js’ whatwg-url library omit the control characters
altogether. cURL throws a parsing error, which is also accept-
able. PHP behaves in a special way, wherein it replaces the
control characters with an underscore ( )!

URL http://127.0.0.\r\n1:6379?SET\r\ntest\r\nfailure12:80
Chrome, url-parse host: 127.0.0.\r\n1
Urllib3, uri-js host: 127.0.0.%0D%0A1
Urllib, whatwg-url host: 127.0.0.1
PHP host: 127.0.0. 1
cURL Error

URL https://user:pass@xdavidhu.me\test.corp.google.com
Chrome, url-parse host: xdavidhu.me est.corp.google.com
Urllib3, uri-js host: xdavidhu.me%09est.corp.google.com
Urllib, whatwg-url host: xdavidhu.meest.corp.google.com
PHP host: xdavidhu.me est.corp.google.com
cURL Error

Control character confusion can lead to CRLF injection
attacks [50] and Header injection attacks [51]. For eg. [52].

4) Backslash confusion: According to RFC 3698, a back-
slash is different than a forward slash and should not be inter-
preted as one. However, some modern browsers and parsers
use forward slash and backslash interchangeably, because
the WHATWG URL specification states that they should be
treated in the same way. This is opposite to the RFC which
suggests percentage encoding of non-reserved characters. As

shown through the below example, Chrome, whatwg-url, and
url-parse libraries omit backslashes or convert them to forward
slashes and assume the URL to be in a valid form. Urllib3,
uri-js encode the backlashes, while PHP and cURL exhibit
unpredictable behavior.

URL https:/\\/\\/\\github.com/foo/bar
Chrome, whatwg-url host: github.com
Urllib3, uri-js path: /%5C/%5C/%5Cgithub.com/foo/bar
Urllib path: /\\/\\/\\github.com/foo/bar
PHP path: /\/\/\github.com/foo/bar
cURL host: \

Exploiting this category can enable a malicious at-
tacker to easily bypass many different validations. It
can also lead to Hostname direction attacks, eg. URL:
”http://google.com:80\\@yahoo.com/#what\\is going on”.

5) Slash confusion: The addition of a non-standard number
of slashes, especially in the authority section of the URL,
causes inconsistencies in authority detection. We found that
modern browsers omit or ignore the extra slashes, and treat
the URL as valid. Some URL parsers behave according to
RFC 3986, which states that the authority is followed by a
colon and a double-slash until the end-of-line or a delimiter is
encountered. More than two slashes cause parsers to interpret
the entire URL as a path. For example,

URL foo://///////bar.com/
Chrome host: bar.com
Urllib, urllib3, uri-js, url-parse, whatwg-url path: ///////bar.com/
PHP Error

cURL is optimized for usability and its behavior depends
on the number of slashes. This is clearly stated in cURL’s
documentation [53].

URL cURL’s Behaviour

http:/google.com host: google.com
http:///google.com host: google.com
http:////google.com Error

An adversary might be able to bypass security checks
because of this confusion and can cause a variety of exploits.
Sub-section VI-A describes one proof-of-concept exploit.
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6) Path confusion: Inconsistencies in parsing double-dots
in the path segment of the URL can cause serious vulnerabil-
ities. We found that some URL parsers discard the dots and
assume an absolute path, while others retain the dots. This is
another instance when cURL misbehaves!

URL ../g
Chrome, urllib path: /g
Urllib, uri-js, url-parse, php path: /g
Whatwg-url Error
cURL host: ..

This vulnerability can lead to information leakage attacks
via directory traversal [54].

7) Encoding confusion: This category is for URLs that
contain encoded characters. RFC 3986 states that all URL
components except the scheme can be represented using URL
encoded characters, and they should be decoded when parsed.
However, some parsers do not encode non-ASCII characters
even though the specification suggests doing so. ”Non-ASCII
characters must first be encoded according to UTF-8 [STD63],
and then each octet of the corresponding UTF-8 sequence must
be percent-encoded to be represented as URI characters.”

As shown in the example below, chrome and url-parse
decode the Unicode characters. Whatwg-url, uri-js, and urllib3
perform IDNA encoding [55], i.e. convert Unicode characters
in the host to their ASCII equivalent representation. The ”xn–
” says ”everything that follows is encoded-Unicode.” On the
other hand, urllib, PHP, and cURL do not decode the Unicode
characters.

URL http://\u30d2:\u30ad@\u30d2.abc.\u30cb/\u30d2
Chrome, url-parse host: ヒ.abc.ニ
Urllib3, uri-js, whatwg-url host: xn–pdk.abc.xn–idk
Urllib, PHP, cURL host: \u30d2.abc.\u30cb

An adversary could bypass validations by decoding the
URL she wants to retrieve. This inconsistency can cause URL
misinterpretation and URL look-alike attacks [56].

VI. EXPLOITING URL PARSERS

We show two concrete ways in which we combine various
URL parser inconsistencies discussed in Section V to break
web security. The basic attacks depend on the usage of
multiple URL parsers that behave inconsistently. Although
we show only two PoCs, we emphasize that a vast range of
vulnerabilities can be exploited using the similar ideology. The
code listings are shown in Appendix A.

A. Exploiting Backslash/Hostname Confusion

Most real-world applications have a huge code-base, mod-
ularized into multiple files, folders, and even applications
in the case of a distributed application. Along with that,
application developers keep changing and rotating over time.
In such organizations, it’s often difficult to maintain con-
sistent usage of third-party libraries across modules. In this
PoC attack, we assume two separate modules - one is a
utility module (Listing 1) which checks if a given URL is

valid using urllib3, and the other module implements a
file download feature using requests which depends on
urllib (Listing 2). By passing specially crafted URL, e.g.,
http://example.com:80
@localhost:8080/secret.txt, an attacker can pass
the checks and read secret.txt from localhost.

B. Exploiting Slash Confusion

For this exploit, consider a PHP application (Listing 3) that,
by design, has a feature vulnerable to SSRF. To mitigate this
vulnerability, the application validates URLs using a blacklist
of hostnames. If a match is found, it blocks the requests to
the host. Otherwise, it passes the URL into cURL to fetch
the resource. If the URL parser used to validate the URLs
follows RFC-3968, it will return an empty host. And if the tool
used to fetch the resource is one that simply ignores multiple
slashes, it’ll go to the malicious website. For example, a call
to https:///evil.com will bypass the validation check.

VII. LIMITATIONS AND FUTURE WORK

Although we tried to expand our research to a variety of
URL parser tools, across a handful of programming languages,
we still examined a limited number of URL parser libraries.
The framework is not fully automated and still requires manual
effort during URL extraction from parsers test-suite to hook
into test-code. Another limitation is that the exploits are only
proof-of-concept attacks and not real-world attacks. Chrome
canonicalizes URLs [57] wherein it transforms specific URL
components or specific types of URLs into a standard form.
This detaches the URL parsing results from the actual browser
results (i.e., we found URLs that Chrome’s library did not
parse correctly, but when we tested them in the browser, they
were corrected).

In future work, we plan to look into popular web frame-
works such as WordPress, Express.js, and others to detect URL
parsing inconsistencies. We also plan to improve on the au-
tomation of the framework. Since we have identified categories
of the discovered inconsistencies, we plan on automating the
categorization of inconsistencies in the framework itself. The
framework should be able to perform a more detailed analysis.
We want to modularize and expand the framework to support
more parsers.

VIII. CONCLUSION

The procedure of developing a precise and exhaustive URL
syntax and implementation specification, or enforcing this
specification, is an extremely challenging task. Currently, there
exist two URL standards and the URL parsing libraries,
browsers, or tools do not entirely follow either of the standards.
Due to the complex nature of URLs, the standards also miss a
lot of corner cases which leads to discrepancies between URL
parsers and open them up to exploitation. To make matters
worse, differences are observed across libraries in the same
programming language. In this work, we tested 8 URL parsers
including 1 browser, 1 command-line tool, and 6 programming
language libraries.
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The framework we developed first generated a URL
database consisting of 1,445 URLs fetched from the testing
suites of all the examined parsers. It then cross-tested all the
parsers with this URL database exposing 4,262 inconsistencies
in their parsed outputs. We performed an extensive analysis of
these inconsistencies and identified 7 categories of URL parser
vulnerabilities.

As far as we are aware, this is the first academic study diving
into the depths of URL parsers. Understanding the existence
of inconsistencies between URL parsers, and gaining detailed
knowledge on how a specific parser behaves when fed with
edge cases, will help developers pick an appropriate URL
parser for their application. The lack of a prior study, and
the rise in the number of SSRF exploits, suggest an urgent
need to look into the standardization and enforcement of rules
to harden the first layer of defense in the web security world.
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APPENDIX

List of parsers and tools we used to test for URL parser
inconsistencies, their popularity statistics, and the number of
URL parsing CVEs reported on each of the parsers.

Environment Name Downloads CVE count Standard
npm whatwg-url 40.9M / week 2 WHATWG
npm uri-js 30M / week 2 RFC-3968
npm url-parse 13.7M / week 4 WHATWG
php parse url 77.9 % 1 5 RFC-3968
python urllib 43.1k stars 4 RFC-3968
python urllib3 2.9k stars 3 RFC-3968
browser chrome 63.58 % 2 12 WHATWG
cli cURL 23.8k stars 5 RFC-3968

TABLE II
THE LIST OF TOOLS AND LIBRARIES THAT WE USED TO TEST FOR URL

PARSING INCONSISTENCIES

1 Of all websites whose server-side programming language is known [58].
2 Chrome’s worldwide market share. [59].

An adversary can use a well-craft a URL to upload a
malicious file or cause a user to download one.

from urllib3.util.url import parse_url
def is_valid(url):

# Verify url belongs to whitelisted domain and secure
scheme + port↪→

parsed = parse_url(url)
if parsed.scheme == 'https' and parsed.hostname ==

'example.com' and parsed.port == 443:↪→
print("URL valid.")
return True

else:
return False

Listing 1: The snippet verifies if the URL is in allowed list of
URLs, and if so return True

import requests
from urllib.parse import urlparse

url = sys.argv[1]
if util.is_valid(url):
parsed = urlparse(url)
remote = 'http://' + parsed.hostname + ':' +

str(parsed.port) + parsed.path↪→
# Download file
response = requests.get(remote)
print("File downloaded from URL: ", response.url)

else:
print("Invalid Request.")

Listing 2: The code takes as input a URL and prints the content
of the file

The tool will will fetch a confidential resource because
the parser that validates the host against an allow-list ignores
multiple slashes.

<?php
$url = "https:///evil.com";
$parsed = parse_url($url);
# Check if the URL is blacklisted
if ($parsed["host"] == "evil.com") {

print("URL not allowed.\n");
exit();

}
$curl = curl_init($url);
$data = curl_exec($curl);
print($data);
?>

Listing 3: The snippet checks if the URL is not blacklisted
before passing it to cURL which ignores multiple slashes

Rules Outcome Examples
If the difference is
cosmetic

Ignore path: ’h’ and path: ’/h’.
Urllib3 combines password and username as
’user:pass’ and others separate them out.
Square brackets around IPv6 hosts
’[dead:beef::1]’.

If there is a letter-
case difference in
the hostname

Ignore ’GooGle.com’ is converted to ’google.com’.

If there is a letter-
case difference in
the scheme

Ignore For url ’abOut://eXamPlE.com?info=1’, urllib3
interprets scheme as ’about’ while php interprets
it as ’abOut’. Same with ’HTTP’.

If a library does not
parse an URL and
returns an error

Retain When port is not a valid integer
’http://www.example.net:foo’, php and urllib3
return an error while urllib parses it as username.

If the difference is
in encoding

Retain URL ’/rest/Users?filter={”id”:”123”}’
is encoded by urllib3 as ’fil-
ter=%7B%22id%22:%22123%22%7D’; not
by php.

If there’s a SOP or
’scheme, host, port’
difference

Retain If the scheme is empty, urllib by default assume
it to be HTTP.

TABLE III
THE LIST OF PRE-DETERMINED RULES USED TO CLASSIFY AND

PRIORITIZE THE PARSER INCONSISTENCIES.
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