Understanding Cross-site Leaks and Defenses

Tom Van Goethem
imec-DistriNet, KU Leuven
tom.vangoethem@kuleuven.be

David Dworken
Google
ddworken@google.com

ABSTRACT

A web visit typically consists of the user’s browser rendering gen-
erated HTML, CSS and JS content that is tailored to the user. This
dynamic generation of responses based on the currently authen-
ticated user, whose authentication credentials are automatically
included in all requests including cross-site requests, have lead
to a multitude of issues. Through cross-site leaks (XS-Leaks), an
adversary can try to circumvent the same-origin policy and extract
information about responses, which in turn reveals potentially sen-
sitive information about the user. As this class of attacks has been
the subject of a lot of recent research, and it affects many different
components of the web platform, the causes and underlying tech-
niques are not always very well understood. In this paper we define
an abstraction of the XS-Leaks attacks, and introduce a model that
we use to reason about the cause of different leaks and how the
various defense mechanisms aim to defend against them. As the
attacks are multifaceted and complex, multiple defenses need to
be enabled to adequately thwart XS-Leak attacks. To facilitate de-
ployment of these defenses, we introduce LEAKBUSTER, a dynamic
web application that provides web developers with suggestions to
improve their website’s security.

1 INTRODUCTION

For many, the web plays an important part of their daily life, ranging
from sharing personal information with friends on social networks,
or looking up health-related details. It is well-known that people
share a lot of sensitive information with trusted websites, and that
if this data would be disclosed by adversarial parties, this could
have significant consequences. Depending on the attack, there are a
myriad of ways that the information could be abused. For instance,
information leaked from social networks could be leveraged to
identify a user [50, 56], determine what their interests are [30], or
infer who they were messaging with [31]. Through similar attacks,
search functionality has been shown to leak information about
undisclosed vulnerabilities [17, 57] or credit card details [16].
This class of vulnerabilities is typically referred to as cross-site
leaks, or XS-Leaks, and has received a lot of interest by the security
community in recent years. The XS-Leaks techniques exploit a large
variety of browser mechanisms to leak sensitive information about
opaque cross-site responses that are based on the state that the
unwitting visitor has with the targeted website. In essence, every
mechanism that deals with handling responses may be susceptible
to being abused to leak information about these responses. To date,
most vulnerabilities have been detected by manually evaluating
specific browser mechanisms, such as the Application Cache [27] or
the Quota API [58]. Because of the very varied nature of XS-Leaks,

Gertjan Franken
imec-DistriNet, KU Leuven
gertjan.franken@kuleuven.be

Iskander Sanchez-Rola
Norton Research Group
Iskander.Sanchez@nortonlifelock.com

Wouter Joosen
imec-DistriNet, KU Leuven
wouter.joosen@kuleuven.be

also a variety of defenses are needed to thwart them, and in fact,
there is no single defense that is sufficient to prevent all XS-Leaks.
This makes it very difficult for web developers to protect their users.

In this paper we aim to improve the understanding of XS-Leaks,
and more specifically study the similarities between the different
attacks, and the cause of their existence. To this end, we introduce
a model of XS-Leaks and show how in every component that is
involved with handling a response, a state-change may occur that
depends on the response. For example, when the rendering of a doc-
ument triggers certain resources to be cached, this alters the state
of the HTTP cache. In the second stage of an XS-Leak attack, the
state-change that occurred in a particular component is retrieved.
In the prior example, this can be done by performing a timing attack
to infer whether the resource was loaded from the cache. Based on
this model, we also create a taxonomy that can be used to classify
XS-Leaks and provide a clear overview of how the different attacks
relate to each other.

Furthermore, we analyze the currently supported defenses against
XS-Leaks and map these back to the model that we created, to bet-
ter understand their intent. We identify three different strategies
for defenses, namely trying to prevent state-changes from occur-
ring in certain components, accepting that state-changes will occur
and isolating these such that they can not be observed cross-site,
and preventing the responses from being based on the state of the
user by blocking illicit requests or removing authentication details.
Based on this analysis, we determine which category of attacks are
blocked by certain defenses and recommend the minimally required
set of defenses that are needed to thwart all attacks. Finally, we
introduce LEAKBUSTER, which is an interactive web application that
facilitates deploying XS-Leak defenses, and is based on our insights
of a real-world case study where defenses were deployed on wide
range of popular services.

In summary, we make the following contributions:

e We introduce a model for XS-Leaks showing how different
components that are involved with handling responses may
be abused to introduce state-changes based on the response.

e Based on this model we create a taxonomy for XS-Leaks
and use it to classify known attacks that were discovered
through an extensive literature review.

e We analyze the general strategies that are employed by de-
fense mechanisms and find that a combination of isolation
defenses and defenses that prevent illicit authenticated re-
quests are needed to thwart all attacks.

e We share the insights of a real-world case study where de-
fenses were deployed at large scale, and use these to create

LEAKBUSTER, a dynamic web interface that can be used by
web developers to facilitate the deployment of defenses.

2 BACKGROUND: SAME-ORIGIN POLICY

When the web was originally envisioned, its main goal was to facil-
itate the sharing of public static information. As a result, the site
defined in the URL was mainly there to easily access the web pages,
and was not related to any security properties, as cross-site attacks
had no practical impact. It was not until later, after cookies were
introduced to the web platform, and users could authenticate with
websites, and share private information with them, that security
became more important. However, as cookies were not designed
with security in mind, and thus are attached to all requests of the
domain they were set on, this gave rise to a new class of vulnerabil-
ities. For example, in a CSRF attack, the attacker tricks their victim
to send an authenticated request that performs an unauthorized
action on the target website, e.g. change the victim’s password.

The automatic inclusion of cookies in requests did not only en-
able state-changing attacks, but is also at the base of attacks that aim
to uncover information that a user shared with a particular website.
As this clearly has significant security and privacy consequences,
the same-origin policy was devised [36] which is a set of security
principles that ensure that one origin cannot leak any information
about resources from another origin, unless permission is explicitly
granted. As a result, the concept of an origin (scheme, host, port)
and site (scheme, eTLD+1) now is a security boundary, and infor-
mation should be confined within this boundary. This includes the
content of the response body, the header values as well as metadata,
e.g. size of the response. Due to historical and practical reasons,
some metadata is intended to be known, such as the dimensions
of an image. However, it has been shown that other, potentially
sensitive, information can be leaked across site boundaries through
various side-channel attacks. These are referred to as XS-Leaks and
are the main focus of this paper.

3 A TAXONOMY FOR XS-LEAKS

XS-Leaks have been known, although not always explicitly under
that name, for well over a decade. Prior work has mainly focused
on describing newly discovered techniques or discuss the conse-
quences of known XS-Leaks. In this paper, we take a step back
and focus on the, sometimes non-obvious, commonalities that exist
between different XS-Leak attacks. To this end, we first propose a
model that explains the source of certain leaks and use this model
as the basis for creating a taxonomy of XS-Leaks.

3.1 Running example

As a running example of XS-Leaks, we introduce a very straight-
forward search application, of which the Jinja template is shown in
Listing 1. The underlying application authenticates the user based
on the cookie that is attached to the request, and performs a textual
search on the user’s private information based on a string provided
in a GET parameter. For each result, the description is shown along
with an icon that is loaded from a CDN. We assume that the applica-
tion is secured against “typical” web security vulnerabilities, such
as SQL injection and cross-site scripting. Interestingly, despite this
fairly trivial functionality, there are multiple XS-Leak techniques

1

<!DOCTYPE html>

2 <html lang="en">

> iframe.src =

3

<body>
<h2>Search results </h2>
<div class="results">
{% for result in results %}

{{ result.description }}
{% endfor %}
</div>
</body >
</html>

Listing 1: Example template of a search application.

const icon_url = 'https://cdn.com/result—icon.png'
"https://service.com/?q=password '
iframe .onload = () => {

const start = performance.now();

await fetch(icon_url);

const duration = performance.now() — start;

if (duration < 5) // loaded resource from cache

console.log ('Query had results');
else

console.log ("No results for query parameter");

Listing 2: XS-Leak attack against example application.

that can be used to leak the user’s private information. In fact, this
example is based on real-world vulnerabilities that were discovered
in a series of Google products [54].

Listing 2 shows the JavaScript code of what an adversary would
run on their malicious site to determine whether any results were
shown for a specific (attacker-supplied) keyword. The attack first
loads the resource in an iframe (although it could also open it in
a separate window using window.open() or window.opener). It
then waits for the document to load, and subsequently uses a timing
attack to determine whether the icon was loaded from cache. This
would indicate that loading the target page caused this, which can
only occur when there was at least one result for the query. In order
to check multiple queries, the attacker would need to reset the state
of the cache, and thus use any of the known techniques [65] to
remove the icon from the cache. Note that as a result of the recent
network isolation defenses, this specific attack is prevented.

The example application is also be vulnerable to other XS-Leak
attacks. For instance, detecting the size of the response gives leaks
whether there were any, and possibly how many, results [4, 56, 58].
Furthermore, a new connection might need to be established to
retrieve the icon image from the CDN, which also only happens
if there is at least one result. This can be detected by leveraging
the global limit on the connection pool [11]. In case the execution
time of processing the request depends on how many results are
generated, this may also create a timing side-channel that can be
exploited [16, 57].

3.2 Definition and threat model

For the attacks discussed in this paper, we consider a threat model
where the victim lands on a web page that is (partially) controlled by
an adversary. This could either be a malicious web page containing
arbitrary code, a compromised web page, or a web page containing
a malicious advertisement. Unless stated otherwise, we consider
that no restrictions, e.g. through the sandbox attribute of an iframe,
are imposed on the attacker’s web page.

We define XS-Leaks attacks as follows: an attack where the
adversary leverages various browser operations and observes their
direct or indirect effects in order to infer information about cross-
site resources that reflect the state that the user has with a targeted
website!. These cross-site resources are dynamically generated
based on the identity of the victim, which is typically inferred from
the included cookie, the requested endpoint, and (attacker-provided)
query parameters. For simplicity, we consider that the returned
response will be one of two distinctive options, depending on the
state of the user, where one is considered the baseline, and the other
has at least one differentiating aspect. Furthermore, the methods
used by the adversary to distinguish the two possible responses
can either exploit intentional cross-site leaks, e.g. the dimensions
of images can be directly observed, or through a side-channel leak,
e.g. the time required to fetch a resource.

Although attacks that aim to determine which websites were
previously visited by a user are closely related to XS-Leaks attacks,
these are out of the scope, and are regularly known as history
sniffing attacks or history leaks. These attacks on user privacy
typically aim to infer the changes that are persisted in the browser
by interactions that were made by the user. For example, the browser
keeps track (locally) of which web pages a user visited, and applies
a different style based on whether the URL was visited (which
could be abused to leak previously visited pages [1, 23, 46]). In
contrast, XS-Leak attacks require any change that is persisted in
the browser to be the result by an operation of the attacker, e.g., an
attacker-triggered request made to the targeted server.

3.3 A model for XS-Leaks

In order to have a better understanding of XS-Leaks, we first in-
troduce a general model, where we abstracted specific aspects of
certain attacks to focus on the commonalities of XS-Leaks. Our
proposed model, which is depicted in Figure 1, is based on an anal-
ysis of all XS-Leak techniques that are known to date, and may
be useful in directing future research on detecting novel attacks
and reasoning about defenses. In this analysis, we determined the
component that is responsible for the leak, and evaluated the reason
why the leak came into existence, and how the sensitive data was
extracted. The model reflects the threat model, i.e., we consider that
the attack takes place when the user visits an attacker-controlled
website (red browser tab in the model). This website can include a
target resource that returns a different response based on the state
of the user (depicted as the R/R’ documents), either directly, in an
iframe, or in a separate window (the inclusion is indicated by the
black arrows).

We make the observation that whenever a resource is included,
this introduces a chain of events that affects different components.
Several of the actions that are taken during the fetching and ren-
dering process introduce a side-effect that can be ephemeral or per-
sistent. As such, every component that is involved in the resource
inclusion process could potentially introduce or alter a certain state,
which can be in the form of firing an event, consuming a shared

This definition is in line with that of prior work (XS-Leaks Wiki [49] and COSI
attacks [52]), but makes it explicitly clear that the attacker aims to infer the state that
the user has with the targeted website.

// https://victim.com/

A
Browser

Operating System /
R/R' j

I
I
I
—
{ S l Web Server

Werating System / Environmey

Figure 1: Model of XS-Leaks, indicating how the differentiating re-
source (R or R’) can be included (black arrow), potentially leaving
behind a state-change (S) in one of the components, that may later
be retrieved from the attacking page (red arrow).

resource or changing the value of a global parameter. The state-
changes that can occur in the various components are indicated
with a database icon marked S. As the topology of the components
is hierarchical, i.e., the client operating system embeds the browser,
which in turn embeds the different tabs, whenever the resource
traverses a component boundary (i.e. when a black line originat-
ing from the resource enters a component), a state-change may be
introduces in this component.

When the state-change is related to the differentiating charac-
teristic of the resource, an attack is successful if this state-change
can be observed by the adversary (indicated by the red lines in the
model). As such, we find that all XS-Leak attacks consist of two
stages:

(1) the state-introduction stage that is forced by the attacker by
including a specific resource in a particular way, and causes a
state-change in one or more components

(2) the state-retrieval stage where the adversary aims to detect
the state-change that occurred in the first stage, either directly,
e.g. by reading the value of a certain property, or through side-
channel information

Not only the occurrence or absence of a state-change may leak
information, but also the time at which it occurs. For instance, in
the example from Listing 2, the Promise returned by fetch() will
always resolve, but the time it takes reveals whether the resource
was served from the cache or accessed over the network.

3.4 Taxonomy

The taxonomy that we propose is based on the two stages of state-
changes that occur in a XS-Leak attack, and aims to capture char-
acteristic aspects of the different attacks. As such, we consider the
following classification properties:

Component retaining state-change When a request is made, a
number of actions are taken by the different components that
are involved with it, from the initialization of the request to the
parsing and rendering. A state-change can occur in any of the
involved components. This property indicates the component
in which the state-change that discloses sensitive information
about the resource occurs and is potentially kept. In our running
example of the cache-probing attack, the state-change occurs
in the browser, as this is where the HTTP cache is kept. Other
components that are present on the client side are the attacker
page and the victim iframe, in case a resource was included by
the attacker in the iframe. An attacker can also open a resource
in another window, and thus the state-change could occur in
this victim window. Finally, state-changes may also occur in the
underlying operating system. We also consider components at
the server-side in which state-changes may occur; for instance
in the web server. For simplicity, here we consider any system
involved with the handling and processing of requests, e.g. nginx
server, PHP code, database server, etc. The operating system or
(virtual) environment in which the web server is run can also be
the origin of state-changes.

For simplicity, we abstract the different sub-components within
the browser or operating system. For example, although the

HTTP cache and connection pool are two different sub-components,

we join them in the same general component (browser).
Resource inclusion method In order to trigger the state-changes
in the different components, the adversary can include the target
resource in various ways, for example directly, using a specific
API, for instance using an to determine whether the target
resource is a valid image. In certain cases it does not matter which
method was used to include a resource and any API from the at-
tacker’s page can be used. The two remaining inclusion methods
are iframe, where the resource will be loaded in a frame embed-
ded in the attacker’s page, and an other window, in a separate
tab. This can be a newly opened tab, using the window.open()
method, or the tab that opened the attacker’s page, which can be
accessed through window.opener.

State-changed aspect Also in the context of the state-introduction
stage, we consider the particular aspect that changed during the
state-change. We consider three different aspects: change of a
property (e.g. the height of a window that is decreased because
a download bar is shown to the user), an event that is fired (e.g.
an error event on an element), and the consumption of a
limited resource (e.g. a connection that is used from the limited
connection pool).

State observation method As part of the state-retrieval stage,
we consider three different methods through which a previously
introduced state-change can be observed: observation of an event
(e.g. using an event listener), reading a property (e.g. the height
for the window), and probing a property. For instance, the cache-
probing attack requires active probing of the property, i.e. using

a timing attack to detect whether the resource was loaded from
the cache (e.g. as in Listing 2).

Affected DOM API If applicable, we record which DOM API or

browser mechanism was responsible for causing the state-change.

For example the History API is responsible for keeping track of

the navigations that occurred in a window.

Information in timing For some XS-Leaks certain state-changes
will always occur; for instance a response for the request will
always be generated, but the aspect that leaks information about
the state of the user with the targeted website, is the time that
the state-change occurs. We indicate XS-Leaks attacks that can
only be successful when the timing of the state-change can be
dynamically observed by the attacker. We note that in real-world
attacks, the timing and order of state-changes may leak additional
information, e.g. by constantly monitoring the number of iframes
embedded in the target document [31], but here we only record
whether timing information is strictly necessary to launch an
attack.

Intended cross-site information Certain exceptions to the same-
origin policy exists, and some information is intended to be ac-
cessed cross-site. For example, the dimensions of an image are
provided to the website that includes it.

Idempotency In certain cases the state-change that occurs may
be permanent and can not be reverted to the previous state, thus
preventing an attacker from making multiple observations. Such
cases are thus non-idempotent. An example is the download bar
that appears when the target resource is downloaded: as the user
needs to actively close the download bar, the attack can only be
used to detect the download navigation of a single resource.

Differentiating aspect Depending on the state of the user, a re-

sponse will be generated that differs in a particular aspect. Typ-

ically, each XS-Leak technique can be used to infer one par-
ticular aspect. This could be a response header (e.g. Content-

Disposition), the contents of the response body (e.g. the number

of iframe elements it contains), metadata of the response (e.g. the

size of the response body), or generation characteristics (e.g. the
time required to process a request).

4 CLASSIFYING XS-LEAKS

In this section we apply our proposed taxonomy to known XS-Leaks
attacks to better understand the underlying causes, which in turn is
useful to understand how the defenses aim to tackle these (discussed
in Section 5), and explore opportunities for future research. We
aggregate known XS-Leaks by performing a systematic literature
review: we consider all papers that were published in the last five
years in a well-known security conference (Security & Privacy, CCS,
NDSS, USENIX Security, ACSAC, AsiaCCS), or an attack- or web-
focused workshop (WOOT, W2SP, and SecWeb). We included every
paper that presented an attack where the threat model matches the
one required for XS-Leaks, and where the attack could be used to
leak information from cross-origin resources. We further extended
this set of attacks with those reported in blog posts, online articles,
or in disclosed bug reports to major browser vendors. In total we
consider 32 distinct XS-Leak techniques.

We group together attacks based on the core mechanism that is
used to leak the information. For instance, Bortz and Boneh showed

that the time to download a response relates to the size of that
response [4]. Gelernter and Herzberg introduce an amplification
attack where the difference in response size grows extensively [16,
§3.1], making the attack significantly more accurate, but still uses
the original mechanism to leak the information. Similarly, in an-
other attack introduced by the researchers, the execution time
on the server is amplified [16, §4], which is similar to what Van
Goethem et al. measure in their timeless timing attacks [57].

The classification of known XS-Leak attacks is shown in Table 1,
and a brief summary of each attack is provided in the Appendix,
Section A. Based on these results, we can make several observations.
It can be seen that there is a lot of diversity in the attacks: state-
changes that occur in all components are responsible for at least
one attack. The majority of the leaks are caused by state-changes
in the attacker page. We believe the reason for this is twofold:
1) most mechanisms that can be used to include remote cross-
site resources originate from the attacker page, and any resource-
dependent parsing or processing is likely to introduce a leak, and
2) the state-changes that occur in the attacker page are mostly
directly observable and thus easier to detect, and in many cases even
described in the specification. On the other hand, it is not directly
clear that creating a new connection will consume a limited resource
(the connection pool), which only has an observable side-effect after
actively probing for the state-change. As such, we consider it an
interesting direction for future research to systematically detect all
different subcomponents in which state-changes may occur.

We found six attacks where the cross-site information is delib-
erately made available across sites. These can be roughly divided
into three different categories. First, in some cases the correct func-
tioning may require the information to be accessible across sites,
or its functionality would make it virtually impossible to hide this
leak. An example of this category is the load or error event on
images or scripts, where the web developer needs to know whether
an image was correctly loaded. A second category are the intended
cross-site information transfers that exist out of historical reasons.
For instance, many years ago, when web developers used an ex-
tensive number of frames to create their web pages, having access
to the number of frames in a page was essential. However, as web
pages start using them, it becomes more difficult to deprecate such
features in order to remove them from the web platform [63]. The
third category consists of mechanisms where the targeted web page
intentionally discloses information to their (cross-site) embedder.
In our literature review, we only found evidence of the postMes-
sage() API but also mechanisms that can relax the same-origin
policy could be included, for instance CORS and Resource Timing
API, when their policy is set too broad.

Another interesting observation is that the mechanisms aimed
at defending against XS-Leaks can also be the source of a leak
themselves. For instance, if the CORP header is only enabled based
on the state of the user and the response that is generated, an at-
tacker could leverage this to leak information. Hence, it is important
for web developers to consistently apply the defenses, and ensure
features are not enabled conditionally.

5 DEFENSES BASED ON XS-LEAKS MODEL

In recent years, there has been an explosion of different defenses
that aim to thwart XS-Leaks. In this section we analyze the different
strategies that were taken by current defenses. We consider four
classes of defenses, namely 1) those that prevent state-changes from
occurring in the browser, 2) defenses that aim to isolate sites from
each other, 3) defenses that aim to prevent the differentiation of the
response and thus prevent user state from being embedded in the
response, and finally 4) defenses that target specific issues.

5.1 Preventing state-changing effects

Whenever a resource is embedded, state-changes could be intro-
duced in every component that this resource passes through, rang-
ing from the attacker page to the client’s operating system. By
preventing the resource to be fully loaded or stopping its rendering,
certain state-changes may not occur, and thus the components can
be safeguarded from XS-Leaks. In the running example introduced
in Section 3.1 the target resource is included as an iframe, and the
parsing and rendering of this resource will trigger the icon image
to be loaded and eventually added to the HTTP cache. By prevent-
ing the resource from being loaded in an iframe, this particular
XS-Leak will thus be mitigated (note: an attacker can still trigger
the rendering of the resource by opening it in another window).
There are two main methods that can be used to enforce a fram-
ing protection, namely by setting the X-Frame-Options header
or by using frame-ancestors directive of CSP. As soon as the
browser encounters any of these two policies, it will stop loading
the resource and prevent if from rendering.This thwarts attacks
that require the target resource to be included in an iframe, and
based on our taxonomy, we can make the following expression that
captures all attacks that are mitigated by this defense:

Defense: framing protection
XS-Leaks thwarted: inclusion_method = {iframe}

By default, a website’s resources can be included by any other
(cross-site) web page, in any context (i.e., as a script, image, video,
...). There are two defenses that can be used to force the browser to
block loading these resources. One can be set by the server through
the Cross-0Origin-Resource-Policy (CORP) header [35]. When
the header’s value is set to same-site or same-origin, the resource
cannot be read by a cross-site web page, and the browser will even
block loading the resource.A related mechanism is Cross-Origin
Read Blocking (CORB), which is enabled by default in Chromium-
based browsers [8]. Implementation in other browsers is expected
to follow as a specification is being created for a similar mecha-
nism [59]. Originally designed as a defense against Spectre attacks,
CORB will block “sensitive” cross-site responses from being passed
to the renderer process (thus making it inaccessible to Spectre at-
tacks). Responses are considered sensitive based on their content
type (i.e., JSON, HTML, and XML).Because blocking only occurs af-
ter the redirection chain, leaks that aim to infer this information are
still feasible. Furthermore, CORB and CORP only affect resources
that are included directly on the attacker’s page, and not via an
iframe or other window.

BIT-SX ST} JO UONNOaXa Juajodwapt sa[qeus jey) anbruypay auo Ises] 18 s3s1x%a 219Y) ‘Jusjoduwapr-uou st anbruypay ymeysp ayi ySnoyiy |

[sz] JU2U0d [} (@) o) = £y1odoxd e Surpear £y1adoxd e jo a8uerd 1dV oyoads :30a11p TOAIDS oM ISSX

[0%] ‘[£6] ‘[#§ ‘1] ssa001d uonEIIULT ° o ° ~ JU9AD UE JO HOPEAIISO poIy JuoAd 14V Aue 0omp IOATOS QOM (owm uonnoaxo) Surum ssuodsax

[12] JU2U0d)) (@) 1dV A103STH] £y12doxd e Surpear £1adoxd e jo s8ueyd MOPUIM I9YJ0 MOPUIM WTOIA (IdV A103STH) 39911paI JUID

[9] JUAU0D [) ° e} SUIBUMOPUIM £yradoxd e Surpear Aradoxd e jo oSueyd MOPUIM IOYJO / SWELT MOPUIM WA / SUIRIT WHIIA J[eS] AWRUMOPULM

[12] sIapeay [] O (e} - £y12doxd e Surpeax £y1adoxd e jo S8ued MOPUIM IDUIO / SWRLT MOPULM WIHOIA / SWIRIJT WIHIIA PEO[UMOP 0] aNp UoTeSIARY OU

[69] JuLIU0d)) [e] Sussaurery £y12doxd e Surpeax £y1adoxd e Jo 98ueyd MOPUIM I9YJO / SWELT MOPUIM WIPIA / SUIRIT WIIOTA Sununos surery

[1¢e§ ‘o1] “[¥] ejepRIOW [} (@] ° — JU9A? UE JO UOTJEAIISGO PaIy JU2A9 14V Aue :30911p SO dPIs-IaAIdS (az1s) Surwm asuodsax

[¥¥] “[s¥] ‘(€] JU2jU0d [O [} - £y1adoxd e Surqoxd £y1adoxd e jo a8ueyd mopurm Iayjo / dwreyr SO 2pIs-judI SRR YR N1dD

[11] BLECHIGR)) (e) o - £y1odoxd e Surqord 90mosax pajrur] Jo uondumsuod MOpUIM ISYIO / SurRIL 135M01q (3rurp [ood) suorosuuod Jurioalap

[61] JuRU0d o] (@] @] uonuaadlg Sunjoel], Juadijpiul £y1adoxd e Surqoxd £312doxd e o a8ueyd MOpuIA 1YI0 198M01q SYed[dLI 1efes

[09] JuRUod [} (@] ° - £y1odoxd e Surqord 9010sax pajruy] Jo uondwmnsuod MOpUIM ISYFO / SR 198M01q (Surum dooj 3uaas) sjoydoo

[z1] ‘[s9] JuRUod e @] @] yoed JLLH £y12doxd e Surqoxd £112doxd e Jo 98ueyd mopurm I9yjo / dwrelr 198Mo01q Burqoxd ayoes

[12] s1opeay o O Q ySreymopurm £y1adoxd e Surpeax £312doxd e jo a3ueyd AMOpuIM I9Y310 I25MOIq Ieq peofumop jo uereadde

[L2] sIapeay [} (@] @] ayoepddy juaas ue Jo uoneAIIsqo Pa1y JU2Ad 1dV Aue :30911p oFed 1oyoene (syoenddy) snyess asuodsax

[ez] ‘(1] U210) e} ® ~]UJAD UE JO UONPAIISO PaIy UdAd surelyr aFed 1oyoene Burpeass [axid 9y1s-ssoxd

[z7¢§ ‘gs] BlEpRIW [} o} @] 1dVv 28e101g £y12doxd e Burqord 901n0sax payru] Jo uondunsuod 1dVv 2goads :3091p oFed 1oyoene | (uondiad ejonb eqofs) azis asuodsax

[12] ‘[r7¢§ ‘8s] BlEpRIOW [} O (@] 1dV ®iond £y1adoxd e Surpeax £312do1d e o a3ueyd 1dV 2goads :30011p aFed 1yoene (1dV ®10nd) 9z1s asuodsax

[95] ejepeIOW) e} ° 1dV 9YoBD) JUIAD UE JO UOHLAIISO paIy JUaAd 1dV oyoads :10a11p afed oene | (1Y dYorD) d1ewnsd az1s asuodsax

[95] ejepRIOW () (e} ° 09PIA/OIPNE JUIAJ UE JO UOTIBAIISGO PaIy UIAd 1dV 2yoads :30911p aged 1pene (Sursred) ayewmss az1s asuodsax

[¥] sIapeay () O e} 14V Surw], 901mosay £y1odoxd e Surpear £y1adoxd e jo a8uerd 14V Aue :30011p o8ed 1ayoene (Surwry, 2010say) OIX 19919p

[zs] s1opeay [} (@] o] OdX 1U9AI UE JO UOHBATISGO PaIy JU2AD 1dV oyoads :30a11p aFed 1xpene (<393[q0>) 04X 199319p

[9] sIapeay [(e} e} d00D £y1odoxd e Surpear £y1adoxd e jo a8uerd MOPUIM I9Y[J0 o8ed 1aydene I19peay] JOOO 19919p

[99] SI9peaY () (e} e} QJOD IUIAD UE JO UOHRAIISGO PaIy A 1dV Aue :0911p oSed 1pene 19pEY JYOD 19919p

[2] JUIIUOD / STOPEIY [(e} e} @I0D 1U9AI UE JO UOTJBAIISQO Pa1y JuaAd 1dV 2yoads :19a11p o8ed 1aene sasuodsar NOS[P2, 200 19919p

[zL] JUU0D () ° e} o8essojyisod JUIAD UB JO UONLAIISGO POIY JUIAD MOPUIM IS0 / SUIRIJT oSed 1pene a8essapyrsod peoiq A19a0

[oz] U0 o e} e} IN[qUO'MOPUIM JUDAD UR JO UOTRAIISGO PoIy JUAD surext o8ed 1peNE SN00J PI JUAWA[D

[81] sIapeay [} @] O Y919 JUDAD UE JO UOIJBAIISCO PaIy JuaAd 14V 2yoads :30a1p afed 1peje ([enuewr Y1) 199IPal I2AIDS

[81] *[ze] s19peay [) e} e} ayoepddy juas ue Jo UOHRAIISqO PaIY JuUaAd 14V Aue :30311p sFed 1xyoene (syeddy) Snjes/109IIpar 19A19S

[1£) sIapeay () (e} O dSD 1U9A3 UE JO UOTJBAIISCO Pa1y Juaad 1dV Aue 30311p a8ed 1peje (UOTIB[OIA JSD) 19DTIPAT I9AISS

[8€] “[81] s1apeay [O (e} U019] JUSAI UE JO UOHBAIISQO 30INOSII pajru Jo uondumsuod 14V Aue :30011p ofed 1oeNE | (JUNOD J0AIIPAT XBUI) JOAIIPAT IIAIIS

[1] BLECHIGR)) () o PEO[UO'SWELT JUIAI UE JO UOIBAIISO Pa1Y JUdAd Swelyr sfed 1yoene (3uaA3 peO) J021IPaT JUAID

[o0s] <[89] SI9peaY / JUUOD [} ® @] dos/Swr JuaAs Ue Jo uoneAIasqo Pa1y JU2A9 1dVv oyoads :0a11p ofed 1yoene ++/a8ewr/ydraos priea(ur)
B S i e L O e T

s)oe)Ie HeIT-§X UMOUY JO UOTJeOYISSe]) T I[qeL

Defense: CORB/CORP

XS-Leaks thwarted:
differentiating_aspect N {content, metadata} + 0 &&
component = {attacker_page] && inclusion_method = {direct}

5.2 Isolation defenses

Another strategy that can be used to defend against XS-Leaks, is to
allow the state-changes to occur, but either ensure that this hap-
pens in an isolated environment, or prevent access to the state,
also by means of isolation. For example, as the result of the re-
cently implemented network isolation defenses, Chrome and
Firefox partition the HTTP cache as well as several other network-
level properties based on the “site” of the top-level document, and,
depending on the implementation, also based on the site of the em-
bedding document (which could be an iframe). Safari has adopted
partitioning of the HTTP Cache in 2013 [61], but did not isolate
other network properties. If an attacker would use a separate win-
dow to perform the XS-Leak attack against our example application
from Section 3.1 (e.g. because XFO prevent the attack via an iframe),
the state-change would still occur, i.e., the icon image would be
cached, but could not be directly observed by the attacker. More pre-
cisely, because the attacker does not share the same HTTP cache as
the victim, changes made in the victim’s cache can not be detected.

Defense: network isolation

XS-Leaks thwarted:
component = {browser} && inclusion_method # {direct} &&
affected_API = {HTTP_cache?}

Another isolation defense is based on preventing attackers from
retaining references to other windows. This defense can be en-
abled through the Cross-Origin Opener Policy (COOP), by setting
the similarly named response header [34, 67]. At the time of this
writing, the header is supported by all major browsers except for
Safari [6]. In essence, when the policy’s header value is set to same-
origin, it ensures cross-origin pages do not have a reference to it.
For example, this prevents the attack that counts the number of
frames in a page from accessing the window. frames. length prop-
erty. Because an attacker page can also include the target resource
in an iframe, it is important that this defense is complemented with
framing protection. An interesting consequence of this defense is
that because the attacker loses a reference to a newly opened win-
dow, this window cannot be closed, and thus attacks that require
opening the target resource in a new window will have to open
many new windows, and will thus not be stealthy.

Defense: COOP
XS-Leaks thwarted:

inclusion_method = {other_window} ||
component = {victim_window}

To counter attacks that leverage state-changes occurring at the
microarchitectural level, or that are related to the process in which
web pages are rendered and executed, a new isolation primitive, site
isolation, was introduced [39]. In essence, site isolation ensures
that documents of different sites are rendered in a separate process.
This means that as long as no sensitive cross-site resources are

2 Any other mechanisms that are partitioned should also be included in this set.

loaded into the renderer, these are protected from attacks such as
Spectre. However, because resources can be included in a cross-site
context by default, this defense mechanism should be considered a
primitive, and needs to be combined with other defense, such as
CORB/CORP, Fetch Metadata, or SameSite cookies. Nevertheless, as
a side-effect of this defense, event loops are now executed per-site,
and thus the Loophole attack that leverages the event loop of the
renderer process has been mitigated.

Defense: site isolation

attack = Loophole
XS-Leaks thwarted:

(only renderer event loop attack)

5.3 Stateless responses

A third defense strategy that can be applied to counter XS-Leaks
is to prevent responses from containing any sensitive user-state.
This type of defense is related to those aimed to thwart Cross-Site
Request Forgery (CSRF) attacks as both need to validate the authen-
ticity of requests and only allow those that are intended. In fact,
defenses against CSRF can also be effective to counter certain XS-
Leaks. For instance, requiring a unique, unguessable token (CSRF
token) in the request ensures that only requests that were triggered
by the web application itself are permitted. When a static response
is returned for illicit requests that do not contain a valid token, the
attacker cannot learn any user-specific information. However, as
direct navigation requests to web pages should be allowed, and
can by definition not contain a token, these pages can not be pro-
tected by a CSRF token (it is for this reason that CSRF tokens are
typically only applied to POST requests). Moreover, if a web page
would include subresources or make API calls that are protected
by a CSRF token, these would still be loaded (and possibly cause
state-changes) when the page is included as an iframe or window.

Defense: CSRF token

inclusion_method = {direct] &&
XS-Leaks thwarted:

resource_type # document

Another option to ensure that no action is taken on the victim’s
behalf (CSRF defense), or that no user-specific information is em-
bedded in the response, is by preventing the cookie from being
attached to the request. This can be achieved by using the Same-
Site attribute on cookies [32]. When the attribute is set to Lax, the
cookie will not be included in cross-site requests, and thus the web
server will not be able to authenticate the user, and thus can not
include user-specific information in the response. This effectively
defends against all attacks that require embedding the resource
directly from the attacker page. However, when the target resource
is included in an other window, the cookies will still be embedded
in the request, and attacks such as measuring the execution time
are still possible. At the time of this writing, the default value for
the SameSite attribute is Lax in Chromium-based browsers [5], and
Firefox intends to also make make this the default [29].

Defense: SameSite cookie
XS-Leaks th d component = attacker_page &&
Bkl (R inclusion_method N {direct, iframe} # 0

To give web developers more insights on what caused the browser
to send a request, the Fetch Metadata request headers provide

information on the context in which a request was made. More
specifically, the Sec-Fetch-Site header indicates whether the re-
quest was made in a cross-site, same-site or same-origin context, or
whether request was the result of a navigation request. Similarly,
the Sec-Fetch-Mode indicates the “mode” in which the request
was made: using CORS or not, as the result of a navigation, or for
a WebSocket. By combining the different headers and evaluating
their values before the request is processed, the server can deter-
mine the legitimacy of the request and return a static (stateless)
error message when the request is considered illegitimate. When
implemented correctly, this can effectively thwart many XS-Leak
attacks.

Defense: Fetch Metadata
XS-Leaks thwarted: inclusion_method N {direct, iframe} # 0

5.4 Targeted defenses

Because the browser is run on physical hardware that has specific
constraints, i.e., resources such as hard disk or number of connec-
tions are limited, there are constraints that will need to be enforced,
or that may cause unintended side-effects, e.g. when the entire
disk space is consumed. In our classification, we found four attacks
that exploit the consumption of a limited resource in the browser
level: event loop timing, response size leak by exploiting the global
limit, detecting connection based on the connection pool limits,
and detecting whether a redirect occurred. The former has been
mitigated as a side-effect of site-isolation defenses [39] where sites
are placed in separate processes, and thus no longer share the event
loop with other sites. The response size leak was fixed by intro-
ducing randomness: whenever a cross-site resource is added to the
cache, a random padding was added to the quota. This effectively
prevents the adversary from learning the response size, as they can
not account for the additional noise originating from the padding.
To date, the leak based on the global connection pool has not been
mitigated; we believe it is interesting to further explore whether
this can also be mitigated by introducing noise or adding an iso-
lation layer. To the best of our knowledge the attack that infers
whether a redirect occurred by leveraging the maximum number
of requests that can occur before a network error is returned, has
not been mitigated either.

5.5 Stopping all XS-Leaks

Because of the variability in the types of XS-Leak attacks, there is
not a single defense mechanism that prevents all XS-Leaks. Instead,
a combination of multiple defenses, both those that are enabled by
default in the browser, and those that need to be opted-in to by the
website are required. We found that in order to defend against all
currently known XS-Leaks, the smallest set of defenses that need
to be combined are the following three: Fetch Metadata, COOP
and site isolation. Fetch Metadata can prevent the server from
processing requests that are sent in an unexpected (and thus likely
illicit) manner, for instance when a cross-site document resource
would be included directly on an attacker page. The server should
only allows top-level navigations and same-origin or same-site re-
quests based on the Fetch Metadata headers; in this case the request
will also be blocked when the resource is included as an iframe. By

explicitly blocking the request before processing it, instead of its
rendering at the client side with framing protection, no timing in-
formation can be leaked from the response-generation process. To
protect users of browsers that do not (yet) support Fetch Metadata,
it is also possible to ensure that the cookie used for authentication
has the SameSite attribute set to Lax. This will prevent the cookie
from being sent along cross-site requests to subresources on the
attacker page.

Because the server can not distinguish intended navigational
requests from those that are triggered by the attacker, and SameSite
Lax cookies will still be included in top-level navigations, COOP is
also necessary to prevent the adversary from including resources
in another window. Note that despite of COOP, windows can still
be opened, but these can not be closed or navigated away from,
making an attack practically infeasible. At the time of this writing,
Cross Origin Opener Policy is not supported in Safari, making it
infeasible to defend against attacks that leverage navigations in
another window. Finally, browsers should enable site isolation to
prevent cross-site secrets from ending up in the same process as
the attacker’s. Site isolation is enabled by default in Chrome [10],
being deployed in Firefox [15] (and available behind a flag), and
not supported in Safari.

6 REAL-WORLD DEPLOYABILITY
CHALLENGES

As a case study of deploying defenses for XS-Leaks at scale, we
report on the approach and challenges that a large technology
company faced when deploying two important XS-Leak protections
across 500+ services serving over a billion users. More specifically,
COOP and a defense based on Fetch Metadata were deployed. For
the latter, a policy was selected that only allows same-site requests
and top-level GET navigations; this policy is typically referred to
as Resource Isolation Policy (RIP) [62, 73], and will be referred
to as such in the remainder of this section. The information and
insights were obtained by working and discussing with the team
that deployed these defenses.

When dealing with hundreds of different services, it is not practi-
cal for the security team to directly collaborate with each service on
every change. Instead, a predefined process for large scale changes
was followed; this process is used company-wide whenever broad
changes that affect hundreds of different packages are affected.
When deploying security features, the general methodology fol-
lowed in the process is as follows:

(1) Prototype with 2-3 high priority products to carefully roll out
enforcement, working closely with the product teams.
— This ensures that the security policy is possible to deploy in
practice and indicates potential deployment challenges.
(2) Change a core framework so that all newly created services
already enforce a given security policy.
— This prevents backsliding so that progress can be made over
time and newly created services remain unaffected.
(3) Deploy a report-only version of the policy in order to gather
quantifiable data and insights about compatibility.
— This makes it possible to understand how users interact with
products in the real world. Oftentimes a product may not
have been designed to be used in one way (for example,

in a popup) but in the real world users often depend on
unexpected workflows that are important to not break.
(4) Monitor reported violations in order to find endpoints that need
special exemptions.
(5) Once there are no remaining violations for a given service,
enable enforcement.

— Enforcement is rolled out gradually in stages. Over a 1 week
period the enforcement is first gradually ramped up for com-
pany employees, after which a similar deployment is done
for all users.

The deployment of RIP and COOP was very similar, with a few
exceptions, as the former is enforced at the server side (based on
request headers) and the latter at the client side (based on response
headers). A key difference is in the reporting: the initial COOP
header did not have a report-only header (required for step 3).
Hence, the security team worked with browser vendors to add
support for the header. For RIP, the reporting is done at the server
side, and thus it can easily be analyzed which requests would be
blocked (and thus may require a relaxation of the policy).

COOP enforcement was first deployed such that newly created
services using a core framework would have it enabled. Over the
next couple months, about two dozen newly created services were
launched with COOP enabled by default, providing confidence that
COOP can safely be rolled out at a larger scale. Subsequently, a
report-only policy was gradually rolled out across 500+ services.
Interestingly, a bug in Chrome’s implementation of COOP caused
the browser to crash in specific cases [7]. Because of the gradual
roll-out, this was detected early on, and the impact remained limited.
Once this issue was mitigated by Chrome, reporting was ramped
up to 100% of the traffic.

The reported violations are automatically collected, processed,
deduplicated, and denoised before they are manually analyzed. A
report is characterized as “noise” if it is non-actionable for a product
team (whether due to browser bugs, irregular user behavior, or other
software interfering with how a website is supposed to work). In
contrast to CSP reports, which can be noisy [25], COOP reports
were found to contain minimal noise, and the noise is generally
easy to identify. Before switching to an enforcing COOP policy, all
reports were first resolved, either by understanding the source of
the noise or by fixing the root cause of the report. The main source
of noise are:

(1) Third-party sites opening one of the services in a popup and
monitoring the closed attribute to determine if the user has
closed the popup. In these cases it was discussed with the prod-
uct team to determine whether this behavior should be sup-
ported.

(2) A variety of browser extensions trigger COOP violations (often
by injecting code that interacts with window.opener). Ina 1
week period, these represented ~300 reports across 50+ services.
These reports were filtered out by checking the sourceFile of
the report to determine if it was caused by a browser extension.

(3) A commonly used library checked window.opener. length. Fil-
tering out reports from this library filtered out ~2% of all viola-
tion reports.

After the noisy reports were filtered out, hundreds of endpoints
were identified that needed to be opened in a popup, and required a

relaxation of the policy, prompting hundreds of changes that were
automatically created, tested, shared for review, and merged.

For COOP, ~2% of all endpoints (spread across 14% of services)
needed an exempted policy of unsafe-none. Since all of these
services use client-side navigation, same-origin-allow-popups
needs to be set for any endpoints on a service if a service ever needs
to open and interact with popups. This represented another 14% of
services. For RIP, ~3% of all endpoints (representing 8% of services)
needed an exemption.

Unfortunately, to prevent introducing new XS-Leaks attacks,
the COOP reporting API has certain known gaps where it will not
trigger a report even though a violation occurred. This means that
a lack of reports does not necessarily mean that it is safe to enable
enforcement. A list of known ways in which this can happen was
created and each product team was asked whether they thought
they fell into any of the incompatible patterns. We elaborate on the
different reporting gaps is listed in the Appendix, Section B.

Lessons learned. To deploy XS-Leaks defenses at large scale,
we believe that a data-oriented approach driven by user-generated
reports has several key advantages. First, not every service needs
to be manually analyzed for the sometimes subtle or unclear causes
that would violate a policy. Second, due to a large variety in users’
systems, and in the way that services may be used by third-party
services, manual testing in an isolated environment would result
in many violations to be missed. Finally, by observing violations
over an extended period of time, accurate predictions can be made
on the potential side-effects of enforcing new defenses, and an
educated judgment can be made whether these are outweighed by
the security benefits. When deploying features that are relatively
new, and possibly not extensively tested, a gradual roll-out process
can ensure that issues are uncovered early on, and few users are
affected. In this case study, XS-Leaks protections were successfully
deployed on 500+ services, providing additional security to over a
billion users.

7 FACILITATING DEFENSE DEPLOYMENT

Defenses against XS-Leaks still have a low adoption rate. Based
on the latest dataset from HTTP Archive (May 2021), CORP is
adopted by 0.84% of websites, and the adoption of COOP is even
lower, at 0.03%. We believe there are several factors that play a
role in the limited deployment of these defenses. First, the defenses
have only been introduced relatively recently (first supported by a
major browser: CORP in March 2019, COOP in May 2020). Second,
because XS-Leak attacks have only recently gained in popularity,
a large fraction of website developers may not be aware of these
attacks and thus do not try to protect against them. Finally, because
of the diversity of XS-Leaks, it may not be clear to developers which
defenses are needed to protect against all attacks, and what the
potential consequences of relaxing a policy for a particular endpoint
can be (and how those can be further protected).

7.1 LEAKBUSTER

To facilitate the adoption of XS-Leak defenses and assess their
impact, we created LEAKBUSTER, a dynamic web interface that
is based on our model and analysis of the defenses presented in

(3) launch PoC

Browser »1 Web server
browser [) .
binaries (2) direct browser (4) capture & persist
to PoC page v results
Evaluation
(1) fetch Chrome or | Manager @

Firefox binary

Figure 2: The framework used to track XS-Leaks prevalence across
browser versions.

Section 5. LEAKBUSTER allows web developers to indicate which XS-
Leak defenses they have currently enabled, and will automatically
determine and display which XS-Leak attacks are defended against
and which might still be exploitable. Furthermore, it will provide
suggestions on how to further secure their website against XS-
Leaks, and provide an overview of points of attention when the
website needs to exempt certain endpoint from security policies.

As support for different XS-Leak defenses differ depending on
the browser engine and version, and certain browsers have built-in
security mechanisms, it is important to take this into account when
providing guidelines on how to adequately protect all users. As
new defenses are regularly implemented, and it may not always be
evident which side-effects a certain change in the browser could
bring along, we created a framework as part of LEAKBUSTER to eas-
ily keep the information up-to-date. An overview of the framework
that we use to automatically assess a browser’s built-in protections
against certain XS-Leaks, as well as validate their support for de-
fense mechanisms, is shown in Figure 2. For all XS-Leaks attacks
that we managed to reliably replicate, we created a proof-of-concept
implementation, and then used an automation framework to test
the PoCs on all available versions for Chromium (75 versions [9])
and Firefox (74 versions [33]). Whenever a new browser version is
released, it can be tested using only a single instruction. When the
PoCs are launched in the browsers, they access the resources from a
dynamic web server that returns responses with the required head-
ers and body. It will then be determined whether the XS-Leak could
be successfully exploited, or was thwarted by a countermeasure.

The results of running the framework on historic browser ver-
sions is shown in the Appendix, in Table 2. Interestingly, we find
that several XS-Leaks such as frame counting and detecting redi-
rects by means of the History API have been present in the web
platform (for both Chromium and Firefox) for a very long time;
starting from the first browser version that we could use for au-
tomation, which was released in 2012. For most other leaks, we find
that the presence of the leak often coincides with the introduction
of a new feature or API (e.g. AppCache, Fetch). As new features
are constantly being added to the web platform, these should be
thoroughly analyzed for any state-changes that they may cause, or
whether they could be exploited to infer the state introduced by
another mechanism. The code of LEAKBUSTER (both the web inter-
face and automation framework) will be made publicly available
upon publication of this paper.

8 RELATED WORK

Most related to our paper, is the research by Sudhodanan et al. [52]
and the XS-Leaks wiki [49]. Both provide an extensive overview of
XS-Leaks, and mainly focus on the type of information that can be
inferred, and introduce classes that are mainly descriptive of how
an attack is performed. In our work, we focus on uncovering the
cause of XS-Leaks by introducing a model and taxonomy, showing
the different stages of XS-Leaks and that state-changes can occur
in different components. Through this view, we also provide a
better understanding of how current defenses work against these
leaks For an overview of known XS-Leaks attacks, we refer to the
classification in Table 1, with an accompanying summary of each
attack in Appendix Section A.

In their research, Schwenk et al. evaluated the implementation
of the same-origin policy in different browsers and detect varying
browser behavior because of the lack of a formal specification [43].
Other violations of the same-origin policy have been explored by
Somé, who found that the permissions of browser extensions could
be leveraged to leak data across site-boundaries [48]. Schuster et
al. present an attack where contention on the network layer is
abused to infer which videos are being played by the user based
on the bursts on the network [42]. We believe that this technique
could potentially also be used as an XS-Leak, to infer information
about web pages. Finally, Franken et al. explored how same-origin
policy violations could be abused in browser engines that are used
to display e-books [13].

Two related research topics that often leverage similar tech-
niques that can leak previously visited websites and fingerprint
the browser and system environment of the user. In contrast to
XS-Leaks, history leaks aim to infer the state that is retained in the
browser by a prior visit of the user, and thus the state-introduction
occurs inadvertently (and is not initiated by the attacker). The state-
retrieval stage, can be very similar to XS-Leak attacks. For instance,
an adversary can exploit a timing leak in CSS filters to extract
whether a link is displayed in the :visited style [1, 46]. Similarly,
in older browser versions, the attacker could simply read out the
computed style to infer whether a certain URL was previously vis-
ited [3, 46]. More recently, Karami et al. [20] and Lee et al. [26]
showed that the service worker cache could also be exploited to
infer whether a user previously visited a specific website.

In fingerprinting attacks, the adversary may also resort to using
techniques similar to those in the XS-Leaks to infer the state of the
browser or system (which is typically introduced by the interaction
between the client and the browser). For example, it has been shown
that it is possible to reveal which browser extensions are installed
through timing attacks [41, 55], or by the changes that the extension
make to web pages [24, 51]. Finally, prior work on user tracking
has focused on introducing a known state in the browser that can
later be retrieved to re-identify the user. These methods typically
include leveraging a method that persists information based on
the resource’s response, such as caches [47], DNS [22], TLS session
state [14, 53], etc.

9 CONCLUSION

XS-Leaks are complex and can occur in all different components
of the web ecosystem. In this paper we abstracted away from the

specific details of the techniques and created a model to create a
better view of what causes the attacks. We find that XS-Leaks are
based on two subsequent phases. In the state-introduction phase the
attacker includes a target resource in a specific way, in an attempt
to introduce a response-dependent state-change in a particular com-
ponent. In the following state-retrieval phase, this state-change is
then detected, leaking information about the cross-site response.
Based on this model, we also analyze the current defenses, and find
that these either aim to prevent state-changes from occurring, pre-
vent the state-changes to be observed, or ensure that the cross-site
response is not based on the user’s information. Finally, motivated
by a real-world case-study on deploying XS-Leaks defenses at large
scale, we introduce LEAKBUSTER, a web application that aims to
facilitate the deployment of defenses by giving suggestions based
on already-deployed mechanisms, and indicating which attacks
could still be launched when certain exceptions need to be made.

REFERENCES

(1]

(2]
(3]
(4]

[10]

[11]

[12

[13

[14]

[15

[16]

[19]

[20

Marc Andrysco, David Kohlbrenner, Keaton Mowery, Ranjit Jhala, Sorin Lerner,
and Hovav Shacham. 2015. On subnormal floating point and abnormal timing.
In 2015 IEEE Symposium on Security and Privacy. IEEE, 623-639.

Lukasz Anforowicz. 2019. CORB vs side channels. https://docs.google.com/
document/d/1kdgstoT1uH5JafGmRXrtKE4yV{jUVmXitjcvJ4tbBvM/edit.

David Baron. 2002. :visited support allows queries into global history. https:
//bugzilla.mozilla.org/show_bug.cgi?id=147777.

Andrew Bortz and Dan Boneh. 2007. Exposing private information by timing
web applications. In Proceedings of the 16th international conference on World
Wide Web. 621-628.

Chrome Platform Status. 2021. Feature: Cookies default to SameSite=Lax. https:
//www.chromestatus.com/feature/5088147346030592.

Chrome Platform Status. 2021. Feature: Cross-Origin-Opener-Policy. https:
//www.chromestatus.com/feature/5432089535053824.

Chromium. 2021. [COOP access reporting] Fix crash, invalid cast. https://
chromium-review.googlesource.com/c/chromium/src/+/2732471.

Chromium. 2021. Cross-Origin Read Blocking (CORB). https:
//chromium.googlesource.com/chromium/src/+/refs/heads/main/services/
network/cross_origin_read_blocking_explainer.md.

Chromium. 2021. Index of chromium-browser-snapshots/. https:
//commondatastorage.googleapis.com/chromium-browser-snapshots/index.
html.

Chromium. 2021. Site Isolation. https://www.chromium.org/Home/chromium-
security/site-isolation.

Chromium bugs. 2018. Issue 843157: Security: leak cross-window request timing
by exhausting connection pool. https://bugs.chromium.org/p/chromium/issues/
detail?id=843157.

Edward W Felten and Michael A Schneider. 2000. Timing attacks on web privacy.
In Proceedings of the 7th ACM Conference on Computer and Communications
Security. 25-32.

Gertjan Franken, Tom Van Goethem, and Wouter Joosen. [n.d.]. Reading Between
the Lines: An Extensive Evaluation of the Security and Privacy Implications of
EPUB Reading Systems. In 2021 IEEE Symposium on Security and Privacy. IEEE,
247-264.

Brent Fulgham. 2018. Protecting Against HSTS Abuse. https://webkit.org/blog/
8146/protecting-against-hsts-abuse/.

Anny Gakhokidze and Neha Kochar. 2021. Introducing Site Isolation in Fire-
fox. https://blog.mozilla.org/security/2021/05/18/introducing- site-isolation-in-
firefox/.

Nethanel Gelernter and Amir Herzberg. 2015. Cross-site search attacks. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security. 1394-1405.

Luan Herrera. 2018. XS-Searching Google’s bug tracker to find out vulnera-
ble source code. https://medium.com/@luanherrera/xs-searching-googles-bug-
tracker-to-find- out-vulnerable- source-code-50d8135b7549.

Luan Herrera. 2021. XS-Leaks in redirect flows. https://docs.google.com/
presentation/d/1rlnxXUYHY9CHgCMckZsCGH4VopLo4DYMvAcOltmaOog/
edit.

Artur Janc, Krzysztof Kotowicz, Lukas Weichselbaum, and Roberto Clapis. 2020.
Information Leaks via Safari’s Intelligent Tracking Prevention. arXiv preprint
arXiv:2001.07421 (2020).

Soroush Karami, Panagiotis Ilia, and Jason Polakis. 2021. Awakening the Web’s
Sleeper Agents: Misusing Service Workers for Privacy Leakage. In Network and

[21

[22]

[23

[24

~
2

[26

[27

[28

[29

(31]

(32]

[33

[34

&
2

[36

[37

[38

[39

[40

[41

[42

[43

[44

[45

[46

Distributed System Security Symposium (NDSS).

Hyungsub Kim, Sangho Lee, and Jong Kim. 2016. Inferring browser activity and
status through remote monitoring of storage usage. In Proceedings of the 32nd
Annual Conference on Computer Security Applications. 410-421.

Amit Klein and Benny Pinkas. 2019. DNS Cache-Based User Tracking.. In Network
and Distributed System Security Symposium (NDSS).

David Kohlbrenner and Hovav Shacham. 2017. On the effectiveness of mitiga-
tions against floating-point timing channels. In 26th USENIX Security Symposium
(USENIX Security 17). 69-81.

Pierre Laperdrix, Oleksii Starov, Quan Chen, Alexandros Kapravelos, and Nick
Nikiforakis. 2021. Fingerprinting in Style: Detecting Browser Extensions via
Injected Style Sheets. In 30th USENIX Security Symposium (USENIX Security 21).
Stuart Larsen. 2020. Filtering the Crap, Content Security Policy (CSP) Reports.
https://csper.io/blog/csp-report-filtering.

Jiyeon Lee, Hayeon Kim, Junghwan Park, Insik Shin, and Sooel Son. 2018. Pride
and prejudice in progressive web apps: Abusing native app-like features in web
applications. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. 1731-1746.

Sangho Lee, Hyungsub Kim, and Jong Kim. 2015. Identifying Cross-origin Re-
source Status Using Application Cache.. In Network and Distributed System Secu-
rity Symposium (NDSS).

Sebastian Lekies, Ben Stock, Martin Wentzel, and Martin Johns. 2015. The
unexpected dangers of dynamic JavaScript. In 24th USENIX Security Symposium
(USENIX Security 15). 723-735.

Andrea Marchesini. 2019. Prototype SameSite=Lax by default. https://bugzilla.
mozilla.org/show_bug.cgi?id=1551798.

Ron Masas. 2018. Patched Facebook Vulnerability Could Have Exposed Private In-
formation About You and Your Friends. https://www.imperva.com/blog/facebook-
privacy-bug/.

Ron Masas. 2019. A now-patched vulnerability in the web version of Face-
book Messenger allowed any website to expose who you have been messag-
ing with. https://www.imperva.com/blog/mapping-communication-between-
facebook-accounts-using-a-browser-based- side-channel-attack/.

Rowan Merewood. 2019. SameSite cookies explained. https://web.dev/samesite-
cookies-explained/.

Mozilla. 2021. Index of /pub/firefox/releases/. https://ftp.mozilla.org/pub/firefox/
releases/.

Mozilla Developer Network. 2021. Cross-Origin Opener Policy (COOP).
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cross-Origin-
Opener-Policy.

Mozilla Developer Network. 2021. Cross-Origin Resource Policy
(CORP). https://developer.mozilla.org/en-US/docs/Web/HTTP/Cross-
Origin_Resource_Policy_(CORP).

Mozilla Developer Network and Jesse Ruderman. 2020. Same-origin policy.
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy.
Yossef Oren, Vasileios P Kemerlis, Simha Sethumadhavan, and Angelos D
Keromytis. 2015. The spy in the sandbox: Practical cache attacks in javascript
and their implications. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security. 1406-1418.

Charlie Osborne. 2021. Playing Fetch: New XS-Leak exploits browser redirects
to break user privacy. https://portswigger.net/daily-swig/playing-fetch-new-xs-
leak-exploits-browser-redirects-to-break-user-privacy.

Charles Reis, Alexander Moshchuk, and Nasko Oskov. 2019. Site isolation: process
separation for web sites within the browser. In 28th USENIX Security Symposium
(USENIX Security 19). 1661-1678.

Iskander Sanchez-Rola, Davide Balzarotti, and Igor Santos. 2019. Bakingtimer:
privacy analysis of server-side request processing time. In Proceedings of the 35th
Annual Computer Security Applications Conference. 478-488.

Iskander Sanchez-Rola, Igor Santos, and Davide Balzarotti. 2017. Extension
breakdown: Security analysis of browsers extension resources control policies.
In 26th USENIX Security Symposium (USENIX Security 17). 679-694.

Roei Schuster, Vitaly Shmatikov, and Eran Tromer. 2017. Beauty and the burst:
Remote identification of encrypted video streams. In 26th USENIX Security Sym-
posium (USENIX Security 17). 1357-1374.

Jorg Schwenk, Marcus Niemietz, and Christian Mainka. 2017. Same-origin policy:
Evaluation in modern browsers. In 26th USENIX Security Symposium (USENIX
Security 17). 713-727.

Anatoly Shusterman, Ayush Agarwal, Sioli O’Connell, Daniel Genkin, Yossi Oren,
and Yuval Yarom. 2021. Prime+Probe 1, JavaScript 0: Overcoming Browser-based
Side-Channel Defenses. In 30th USENIX Security Symposium (USENIX Security
21).

Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef Meltser, Prateek Mittal,
Yossi Oren, and Yuval Yarom. 2019. Robust website fingerprinting through the
cache occupancy channel. In 28th USENIX Security Symposium (USENIX Security
19). 639-656.

Michael Smith, Craig Disselkoen, Shravan Narayan, Fraser Brown, and Deian
Stefan. 2018. Browser history re: visited. In 12th USENLX Workshop on Offensive
Technologies (WOOT 18).

https://docs.google.com/document/d/1kdqstoT1uH5JafGmRXrtKE4yVfjUVmXitjcvJ4tbBvM/edit
https://docs.google.com/document/d/1kdqstoT1uH5JafGmRXrtKE4yVfjUVmXitjcvJ4tbBvM/edit
https://bugzilla.mozilla.org/show_bug.cgi?id=147777
https://bugzilla.mozilla.org/show_bug.cgi?id=147777
https://www.chromestatus.com/feature/5088147346030592
https://www.chromestatus.com/feature/5088147346030592
https://www.chromestatus.com/feature/5432089535053824
https://www.chromestatus.com/feature/5432089535053824
https://chromium-review.googlesource.com/c/chromium/src/+/2732471
https://chromium-review.googlesource.com/c/chromium/src/+/2732471
https://chromium.googlesource.com/chromium/src/+/refs/heads/main/services/network/cross_origin_read_blocking_explainer.md
https://chromium.googlesource.com/chromium/src/+/refs/heads/main/services/network/cross_origin_read_blocking_explainer.md
https://chromium.googlesource.com/chromium/src/+/refs/heads/main/services/network/cross_origin_read_blocking_explainer.md
https://commondatastorage.googleapis.com/chromium-browser-snapshots/index.html
https://commondatastorage.googleapis.com/chromium-browser-snapshots/index.html
https://commondatastorage.googleapis.com/chromium-browser-snapshots/index.html
https://www.chromium.org/Home/chromium-security/site-isolation
https://www.chromium.org/Home/chromium-security/site-isolation
https://bugs.chromium.org/p/chromium/issues/detail?id=843157
https://bugs.chromium.org/p/chromium/issues/detail?id=843157
https://webkit.org/blog/8146/protecting-against-hsts-abuse/
https://webkit.org/blog/8146/protecting-against-hsts-abuse/
https://blog.mozilla.org/security/2021/05/18/introducing-site-isolation-in-firefox/
https://blog.mozilla.org/security/2021/05/18/introducing-site-isolation-in-firefox/
https://medium.com/@luanherrera/xs-searching-googles-bug-tracker-to-find-out-vulnerable-source-code-50d8135b7549
https://medium.com/@luanherrera/xs-searching-googles-bug-tracker-to-find-out-vulnerable-source-code-50d8135b7549
https://docs.google.com/presentation/d/1rlnxXUYHY9CHgCMckZsCGH4VopLo4DYMvAcOltma0og/edit
https://docs.google.com/presentation/d/1rlnxXUYHY9CHgCMckZsCGH4VopLo4DYMvAcOltma0og/edit
https://docs.google.com/presentation/d/1rlnxXUYHY9CHgCMckZsCGH4VopLo4DYMvAcOltma0og/edit
https://csper.io/blog/csp-report-filtering
https://bugzilla.mozilla.org/show_bug.cgi?id=1551798
https://bugzilla.mozilla.org/show_bug.cgi?id=1551798
https://www.imperva.com/blog/facebook-privacy-bug/
https://www.imperva.com/blog/facebook-privacy-bug/
https://www.imperva.com/blog/mapping-communication-between-facebook-accounts-using-a-browser-based-side-channel-attack/
https://www.imperva.com/blog/mapping-communication-between-facebook-accounts-using-a-browser-based-side-channel-attack/
https://web.dev/samesite-cookies-explained/
https://web.dev/samesite-cookies-explained/
https://ftp.mozilla.org/pub/firefox/releases/
https://ftp.mozilla.org/pub/firefox/releases/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cross-Origin-Opener-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cross-Origin-Opener-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cross-Origin_Resource_Policy_(CORP)
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cross-Origin_Resource_Policy_(CORP)
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://portswigger.net/daily-swig/playing-fetch-new-xs-leak-exploits-browser-redirects-to-break-user-privacy
https://portswigger.net/daily-swig/playing-fetch-new-xs-leak-exploits-browser-redirects-to-break-user-privacy

[47]

[48

[49

[50

[51

[52

[53

(54

[55

[56]

[57

[58]

[59]

=
)

A

Konstantinos Solomos, John Kristoff, Chris Kanich, and Jason Polakis. 2021.
Persistent Tracking in Modern Browsers. (2021).

Doliere Francis Somé. 2019. Empoweb: empowering web applications with
browser extensions. In 2019 IEEE Symposium on Security and Privacy (SP). IEEE,
227-245.

Manuel Sousa, terjanq, Roberto Clapis, David Dworken, and NDevTK. 2020.
XS-Leaks Wiki. https://xsleaks.dev/.

Cristian-Alexandru Staicu and Michael Pradel. 2019. Leaky images: Targeted
privacy attacks in the web. In 28th USENIX Security Symposium (USENIX Security
19). 923-939.

Oleksii Starov and Nick Nikiforakis. 2017. Xhound: Quantifying the fingerprint-
ability of browser extensions. In 2017 IEEE Symposium on Security and Privacy
(SP). IEEE, 941-956.

Avinash Sudhodanan, Soheil Khodayari, and Juan Caballero. 2019. Cross-Origin
State Inference (COSI) Attacks: Leaking Web Site States through XS-Leaks. arXiv
preprint arXiv:1908.02204 (2019).

Erik Sy, Christian Burkert, Hannes Federrath, and Mathias Fischer. 2018. Tracking
users across the web via TLS session resumption. In Proceedings of the 34th Annual
Computer Security Applications Conference. 289-299.

terjang. 2019. Mass XS-Search using Cache Attack. https://terjanq.github.io/Bug-
Bounty/Google/cache-attack-06jd2d2mz2r0/index.html.

Tom Van Goethem and Wouter Joosen. 2017. One side-channel to bring them all
and in the darkness bind them: Associating isolated browsing sessions. In 11th
USENIX Workshop on Offensive Technologies (WOOT 17).

Tom Van Goethem, Wouter Joosen, and Nick Nikiforakis. 2015. The clock is
still ticking: Timing attacks in the modern web. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security. 1382-1393.

Tom Van Goethem, Christina Pépper, Wouter Joosen, and Mathy Vanhoef. 2020.
Timeless timing attacks: Exploiting concurrency to leak secrets over remote
connections. In 29th USENIX Security Symposium (USENIX Security 20). 1985—
2002.

Tom Van Goethem, Mathy Vanhoef, Frank Piessens, and Wouter Joosen. 2016.
Request and conquer: Exposing cross-origin resource size. In 25th USENIX Security
Symposium (USENIX Security 16). 447-462.

Anne van Kesteren. 2021. Opaque Response Blocking (ORB, aka CORB++).
https://github.com/annevk/orb.

Pepe Vila and Boris Képf. 2017. Loophole: Timing attacks on shared event loops
in chrome. In 26th USENIX Security Symposium (USENIX Security 17). 849-864.
WebKit. 2013. Optionally partition cache to prevent using cache for tracking.
https://bugs.webkit.org/show_bug.cgi?id=110269.

Lukas Weichselbaum. 2020. Protect your resources from web attacks with Fetch
Metadata. https://web.dev/fetch-metadata/.

Mike West. 2021. Web Deprecation Metrics. https://deprecate.it/.

WHATWG. 2021. HTML Living Standard. 4.8.5 The iframe element. https://html.
spec.whatwg.org/multipage/iframe-embed-object.html#attr-iframe- name.
XS-Leaks Wiki. 2020. Cache Probing. https://xsleaks.dev/docs/attacks/cache-
probing/.

XS-Leaks Wiki. 2020. CORP Leaks. https://xsleaks.dev/docs/attacks/browser-
features/corp/.

XS-Leaks Wiki. 2020. Cross-Origin-Opener-Policy. https://xsleaks.dev/docs/
defenses/opt-in/coop/.

XS-Leaks Wiki. 2020. Error Events. https://xsleaks.dev/docs/attacks/error-
events/.

XS-Leaks Wiki. 2020. Frame Counting. https://xsleaks.dev/docs/attacks/frame-
counting/.

XS-Leaks Wiki. 2020. ID Attribute. https://xsleaks.dev/docs/attacks/id-attribute/.
XS-Leaks Wiki. 2020. Navigations. https://xsleaks.dev/docs/attacks/navigations/.
XS-Leaks Wiki. 2020. postMessage Broadcasts. https://xsleaks.dev/docs/attacks/
postmessage-broadcasts/.

XS-Leaks Wiki. 2020. Resource Isolation Policy. https://xsleaks.dev/docs/
defenses/isolation-policies/resource-isolation/.

XS-Leaks Wiki. 2020. X-Frame-Options and Status Type Detector. https://xsleaks.
github.io/xsleaks/examples/x-frame/index.html.

SUMMARY OF XS-LEAKS

(in)valid script/image/... When including a resource as a script

or an image, this will trigger an error event in case the content of
the resource does not match the expected content. For instance,
including an HTML resource in an element will trigger
an error event, whereas a valid image resource will result in a
load event.

client redirect (load event) When a document resource is included

as an iframe, the load event will be fired every time a document

is loaded. Therefore, when a client-side redirect occurs after the
document has loaded, the load event will be fired multiple times.

server redirect (max redirect count) According to the Fetch spec-
ification, when twenty server-side redirects occur, a network
error will be returned. As such, to determine whether a specific
resource causes a redirect, the attacker can first make a request
to their own server and redirect 19 times, after which a redirect
to the target resource occurs. If this resource redirects, a network
error can be observed, otherwise the resource will be loaded.
Note that this method can also be used to determine the exact
number of redirects that occur.

server redirect (CSP violation) By defining a (restrictive) Con-
tent Security Policy on their page, the attacker can determine
from which hosts resources are allowed to be loaded. In case
a resource from a different host is loaded, this will result in a
violation of the CSP, which can be observed by listening for a se-
curitypolicyviolation event. As such, this allows an attacker
do determine whether a resource redirects to a host that is not
defined in the allowed sources according to the attacker’s defined
CSP policy.

server redirect/status (AppCache) Entries in the AppCache man-
ifest that redirect or have a non-200 status code will cause an
error event on the applicationCache object; in case no redirect
occurs, the cached event will be fired. This allows an attacker to
determine whether a certain resource will cause a redirect.

server redirect (Fetch manual) When the redirect option of
in the fetch() call is set to manual, the returned Promise will
resolve in case a redirect happens, otherwise the promise will be
rejected. The attacker can determine whether a redirect occurred
by interpreting the resolution of the promise.

element id focus When a document resource is loaded in an iframe
where the URL fragment is set to the ID of a DOM element on the
page, the browser will focus this iframe, causing the embedding
(attacker) page to lose focus, which can be observed by listening
for the blur event.

overly broad postMessage To allow for cross-site communica-
tion, the postMessage API can be used. For instance, an embed-
ded page can send a message to the top-most page by using
top.postMessage(msg, origin). The second argument of this
function defines the origin for which the message is intended. If
this is set to the wildcard *, the message will be sent regardless
of the origin of the attacker.

detect CORB’ed JSON responses When a valid JSON document
is included as in <script> element, it will cause a SyntaxError,
which can be observed by listening to the error event. However,
if the response is blocked by CORB, the body will be emptied,
and no syntax error will occur.

detect CORP header Similar to the CORB’ed responses, if a CORP
header is present and it is not set to cross-origin, it will be
blocked, which can then be observed in the attacker page. Alter-
natively, to detect it when it is set to cross-origin, the attacker
can set the COEP header on their page to require-corp, which
will prevent the resource from loading if the CORP header is not
present.

detect COOP header When a page sets the COOP header, it will
prevent other pages from retaining a reference to it. Hence, to
check whether the COOP header is set, the attacker could open

https://xsleaks.dev/
https://terjanq.github.io/Bug-Bounty/Google/cache-attack-06jd2d2mz2r0/index.html
https://terjanq.github.io/Bug-Bounty/Google/cache-attack-06jd2d2mz2r0/index.html
https://github.com/annevk/orb
https://bugs.webkit.org/show_bug.cgi?id=110269
https://web.dev/fetch-metadata/
https://deprecate.it/
https://html.spec.whatwg.org/multipage/iframe-embed-object.html#attr-iframe-name
https://html.spec.whatwg.org/multipage/iframe-embed-object.html#attr-iframe-name
https://xsleaks.dev/docs/attacks/cache-probing/
https://xsleaks.dev/docs/attacks/cache-probing/
https://xsleaks.dev/docs/attacks/browser-features/corp/
https://xsleaks.dev/docs/attacks/browser-features/corp/
https://xsleaks.dev/docs/defenses/opt-in/coop/
https://xsleaks.dev/docs/defenses/opt-in/coop/
https://xsleaks.dev/docs/attacks/error-events/
https://xsleaks.dev/docs/attacks/error-events/
https://xsleaks.dev/docs/attacks/frame-counting/
https://xsleaks.dev/docs/attacks/frame-counting/
https://xsleaks.dev/docs/attacks/id-attribute/
https://xsleaks.dev/docs/attacks/navigations/
https://xsleaks.dev/docs/attacks/postmessage-broadcasts/
https://xsleaks.dev/docs/attacks/postmessage-broadcasts/
https://xsleaks.dev/docs/defenses/isolation-policies/resource-isolation/
https://xsleaks.dev/docs/defenses/isolation-policies/resource-isolation/
https://xsleaks.github.io/xsleaks/examples/x-frame/index.html
https://xsleaks.github.io/xsleaks/examples/x-frame/index.html

the resource in a new window, and then verify whether the
reference to this window is still available.

detect XFO (<object>) When a document resource is included in
an <object> element, and it sets the X-Frame-Options header to
DENY, no load event will be fired on the object element. Without
the XFO header, the event will be fired.

detect XFO (Resource Timing) Typically, when a resource is loaded,

a new PerformanceResourceTiming entry is created. However,
in Chromium-based browsers, this does not happen when an
XFO-enabled document resource is loaded in an iframe.

response size estimate (parsing) The time it takes to parse a re-
source as an audio or video element depends on the size of the
resource. Hence, by measuring the time (repeatedly), an estima-
tion of the response size can be made.

response size estimate (Cache API) The time it takes to add or
remove a response to the cache (using the Cache API), depends
on its size. By repeated measurements, an estimate of this size
can be obtained.

response size (Quota API) To prevent abuse, the available quota
that each website is provided with, is limited. The available
quota can be retrieved from by calling the following API: naviga-
tor.storage.estimate(). A website can observe the currently
allotted quota, force the target resource to be cached (using the
Cache API), and observe the quota again. The size of the resource
will be the difference between the two values.

response size (global quota eviction) Next to a per-site quota,
there also exists a global storage quota. When this limit is reached,
the least-recently used site will be evicted. If an attacker can force
one of their sites to be evicted (of which they know the size),
they can retrieve the size of the response by adding the target
resource to the cache and then fill up the remainder of the global
quota byte by byte, until another eviction occurs.

cross-site pixel stealing When a page embeds a document re-
source in a frame, it can perform certain manipulation on what
is visually displayed. For instance, SVG filters and CSS rules can
be applied. In case the execution of applying these filters on un-
trusted data, i.e., the pixels of a cross-site page, is not performed
in constant-time, the timing information can be abused to extract
text and other visuals from the targeted page.

response status (AppCache)

appearance of download bar When a resource that is opened
in a new window is served with the Content-Disposition:
attachment header, it will be downloaded by the browser. In
Chromium-based browsers, this will cause the download bar to
appear, causing the height of the window to be reduced. This
download bar will remain there until it is closed by the user.

cache probing When a resource is added to the HTTP cache, it
will be loaded much faster in comparison to retrieving the re-
source over the network. When a specific document resource is
loaded in an iframe or window, this may cause specific (other)
resources to be added to the cache. The attacker can then use a
timing attack to determine if any resource was cached. Cached re-
sources will remain in the cache until they are invalidated, hence
making this technique non-idempotent. Nevertheless, there exist
various techniques that allow an adversary to remove specific
entries from the cache.

Loophole (event loop timing) Browsers make use of event loops
to handle the different events that happen. When an event loop
is shared by different cross-site pages (in particular the attacker
page and its target page), the attacker page can leak the time
that the other page requires to handle events by continuously
triggering events and observing the delay between them (a larger
delay indicates that an event had to be handled for the other
page).

Safari ITP leaks The Intelligent Tracking Prevention mechanism
in Safari browsers maintains a list of domains to which several
cross-site requests are made. Whenever a cross-site request is
made to a particular site, that domain is given a strike, and after
sufficient strikes from a sufficient amount of top-level sites, the
domain will be added to the ITP list. When cross-site requests
to domains on the ITP list are made, the Referer header and
any cookies will be stripped. To perform an XS-Leak attack, the
attacker can trigger the loading of the target document resource,
and afterwards use various side-channels to infer whether this
caused any particular domain to be added to the ITP list. Be-
cause the ITP list is only cleared when the browsing history is
cleared, the attack is non-idempotent. Note that this issue has
been mitigated in Safari.

detecting connections (pool limit) The global number of con-
current connections is limited, and when it is reached, the least-
recently used connection will be terminated. An attacker can
thus determine how many new connections the rendering of
the target document resource caused by first establishing the
maximum number of concurrent connections to their server, and
then detecting how many of those were closed by the user.

CPU cache attacks When a document resource is rendered in the
browser, this typically results in various executions on the CPU,
which in turn results in various changes at the microachitectural
level. Prior work has (repeatedly) shown that the trace of changes
made to the last-level cache can identify which websites are being
visited, i.e., in a website fingerprinting attack. As this technique
allows distinguishing two different execution traces of rendering
a document resource, it could in theory also be leveraged to
launch XS-Leak attacks.

response timing (size) On the downstream connection between
the server and the client, the time it takes the server to send
the entire response to the client will depend on the size of the
response. By measuring this time, an adversary can distinguish
small and large responses.

frame counting When the attacker has a reference to a window
in which the target resource was loaded, they can retrieve the
number of frames that are loaded in this document by accessing
the frames. length property. It is also possible to determine the
number of frames in the entire frame-tree, for instance by check-
ing frames[@].length for the number of iframes embedded in
the first frame.

no navigation due to download If a resource with the Content-
Disposition header set to attachment is loaded in an iframe
or window, this will cause the resource to be downloaded and
no navigation will occur in the iframe or window. As a result,
the document’s origin remains about:blank. In this case, the
attacker can still access SOP-protected attributes, such as win-
dow.origin.

window.name leak By setting the window.name property, a name
is given to the current browsing context. When the document
within this browsing context is navigated to a different page, this
name is retained, and thus becomes available across origins.

client redirect (History API) The History API keeps track of
which navigations occurred, which is accessible through the
History.length property. An adversary can navigate a separate
window to the target resource and wait for it to finish loading, and
subsequently navigate that window to an attacker-controlled web
page. By accessing the history.length property, the attacker
will be able to infer how many client-side redirects or calls to the
history.pushState() API were made by the target resource.
Note that server-side redirects using the Location header are
not counted.

response timing (execution time) The time it takes to generate
a response might depend on the state of the user; for instance if
the user is able to access a particular resource such as a private
group on a social network site, the server might take additional
steps to retrieve these, resulting in a timing difference. The com-
putation time can be observed with a typical cross-site timing
or a timeless timing attack. An attacker could try to inflate the
measured timing difference to reduce the measurement noise
introduced by jitter.

XSSI Some websites may dynamically generate JavaScript that
contains potentially sensitive user information. An attacker can
embed this JavaScript in their page, and then read out the sen-
sitive data, either by accessing a global property, overwriting a
prototype, or redefining global APIs.

B COOP REPORTING GAPS

The experience of deploying COOP at a large technology company
discussed in Section 6 gave insight into 3 gaps in COOP reporting
where no reports would be triggered, but enforcing COOP could
lead to a breakage. These three scenarios are included below so as
to assist other sites in deploying COOP.

B.1 Iframe Window Interactions

If a page enables COOP, all iframes on that page also get COOP
enforced. This means that if a page enables COOP and it embeds
a page that needs to open popups and interact with them, it may
break. See this diagram:

site.com
COOP: same-origin

Iframe of other.com ?

Popups

other.com

B.2 Redirects

If:

(1) A page enables COOP enforcement

(2) That page redirects to a page without COOP enforcement
(

3) Some other service window. opens the page with COOP enforce-
ment

(4) That service then tries to use the window reference for cross-
origin communication

Then things can break without triggering a COOP report. See
this diagram:

site.com Popups
COOP:

same-origin-allow-popups

other.com
COOP: same-origin

Redirects

site.com
COOP: unsafe-none

B.3 Iframe Sandbox
If:
(1) A page contains an iframe with sandbox="allow-popups" but
without allow-popups-to-escape-sandbox
(2) That iframe opens a popup to example.com/endpoint
(3) example.com/endpoint enforces COOP
Then the opened popup will show a network error page with the
error CoopSandboxedIFrameCannotNavigateToCoopPage. See this
diagram:

site.com

Iframe of other.com
sandbox="allow-popups"

other.com
COOP: same-origin

Table 2: Evaluation results

Attack Chromium Firefox
(in)valid script/image/.. 21-91 16 - 89
frame counting 18-91 16 - 89
client redirect (History API) 18 - 91 16 - 89
client redirect (load event) 18 - 91 16 - 89
appearance of download bar 39 - 56,59 - 91 -
no navigation due to download 30-91 16 - 89
server redirect (max redirect count) 43 -91 39 -89
server redirect (CSP violation) 76 - 91 -
server redirect/status (AppCache) 20-91 27 - 83
server redirect (Fetch manual) 75-78,80-91 -
element id focus 48 - 91 -
overly broad postMessage 18-91 16 - 89
detect CORB’ed JSON responses 68 -91 -
detect CORP header 73 -91 74 - 89
detect COOP header 83-91 74 - 89
detect XFO (<object>) 72-91 81-89
response size (Quota API) 43 - 62 -
window.name leak 18 - 91 16 - 89

C LEAKBUSTER: SUPPLEMENTARY DATA

Currently deployed defenses:

Evaluate defenses!

Suggestions:

« Set the Samesite cookie attribute to Lax

XS-Leak attacks that are still possible:
server redirect (max redirect count) 9+
Deseription: According to the Fetch specification, when twenty server-side recrects oecur, a
causes a edirec, the attacker can first make a request o1
rediect 19 times, after which a rediret to the targt resource occurs. I this

resource redirects, a network erfor can be observed, otherwise the resource will
be loaded. Note that this method can also be used to determin the exact number

Possible defenses: + al GETs based on Fetch Metadata

server redirect (CSP violation) CE)

Description: By defining a (restrctive) Content Security Policy on their page, the attacker can
d from which hosts resources are

Possible defenses: + Blo

Figure 3: A screenshot of LEAKBUSTER; the user selects which de-
fenses are currently deployed for a specific endpoint, and based on
these the tool will provide several suggestions on how the security
of the website can be enhanced, and provide an overview of the dif-
ferent XS-Leak attacks that are still possible.

A screenshot of LEAKBUSTER is displayed in Figure 3. On top
a web developer can enter which defenses were already deployed
for a specific endpoint. Based on this provided information, LEAK-
BUSTER will make an assessment of the website’s ability to counter
XS-Leaks with the current defenses. If the protections are insuffi-
cient, a list of suggestions is provided that can be used to improve
protection; we plan to also include concrete guidelines of how to
deploy the defenses and point to the relevant resources for more
information, and to give a prioritization for deploying different
defenses. Additionally we show the list of XS-Leaks that are still
possible, and indicate which browsers are susceptible to them (in-
cluding the version number).

The results of testing XS-Leaks attacks in historical browser
versions (Chromium: versions 18 until 91, Firefox: 16 until 89), are
shown in Table 2. A timeline for when support for various defenses
that can be used to thwart XS-Leaks was first enabled in Chromium
and Firefox is shown in Figure 4.

Chromium

CORP COOP
Fetch Metadata Network isolation
CORBI SameSite=Lax default
Jun 2IOls Sep é018 Dec éOlB Mar '2019 Jun 2'019 Sep '2019 Dec '2019 m20 juh éOZO Sep '2020 Dec '2020 Mar '2021 Jun 2"021
COOP Network isolation
CORP Fetch Metadata
Firefox

Figure 4: Timeline of the dates when XS-Leaks defenses were enabled and supported in Chromium and Firefox. Initial support for the SameSite
cookie is not shown in the diagram; this is May 2016 for Chromium and May 2018 for Firefox.

	Abstract
	1 Introduction
	2 Background: same-origin policy
	3 A taxonomy for XS-Leaks
	3.1 Running example
	3.2 Definition and threat model
	3.3 A model for XS-Leaks
	3.4 Taxonomy

	4 Classifying XS-Leaks
	5 Defenses based on XS-Leaks model
	5.1 Preventing state-changing effects
	5.2 Isolation defenses
	5.3 Stateless responses
	5.4 Targeted defenses
	5.5 Stopping all XS-Leaks

	6 Real-world deployability challenges
	7 Facilitating defense deployment
	7.1 Leakbuster

	8 Related work
	9 Conclusion
	References
	A Summary of XS-Leaks
	B COOP Reporting Gaps
	B.1 Iframe Window Interactions
	B.2 Redirects
	B.3 Iframe Sandbox

	C Leakbuster: supplementary data

