A preliminary study on the adoption and effectiveness of
SameSite cookies as a CSRF defence*

Luca Compagna
SAP Labs France

firstname.lastname @ sap.com

Hugo Jonker
Radboud University

Open University Netherlands

Johannes Krochewski
SAP Labs France

firstname.lastname @sap.com

firstname.lastname @ ou.nl

Benjamin Krumnow
TH Koln
Open University Netherlands
firstname.lastname @th-koeln.de

Abstract—The SameSite cookie attribute was introduced to
prevent Cross-site Request Forgery (CSRF) attacks. Major
browsers support SameSite functionality since 2016. Since
2020, browsers enforce it by default. These developments
sometimes have been celebrated as the end of CSRFE. In
this paper, we have a closer look into the potential of
SameSite mechanism to effectively fight CSRF in prac-
tice. Our measurements and evaluations over most popular
websites indicate that, if properly deployed, the SameSite
mechanism can be effective against the major CSRF attack
scenario. Still, like any other countermeasure, it is not likely
to be a silver bullet to end CSRF, due to various scenarios
that require additional protection. We refactor our findings
in a set of guidelines for the web community on how to make
best use of SameSite and what it is left to do to fight CSRF.

Index Terms—Browser security, CSRF, SameSite

1. Introduction

Cross Site Request Forgery (CSRF) has been one of
the most common web application vulnerabilities that has
been around for almost 20 years [38], and stayed in
the OWASP Top 10 list until the last release in 2017
release [27], when it was removed because ”More frame-
works offering secure-by-default settings and some form
of protections”.

Indeed various defence mechanisms are available, in-
cluding anti-CSRF tokens, extra steps requiring user to
provide explicit consent via re-authentication or captcha,
and a very recent mechanism based on the SameSite
cookie attribute that allows to specify if a cookie can be
sent along with cross-site requests. (Throughout the paper,
we will call this as the Same-Site Cookie mechanism, or
SSC in short.) While these defences helped to demote and
take out CSRF from the OWASP Top 10 list, recent studies
show that CSRF attacks are still significant [4], [28],
[36], [19]. In particular, CSRF can come in many forms
(depending on authentication status of the user and/or on

*Authors are listed in alphabetical order.

Merve Sahin
SAP Labs France

firstname.lastname @ sap.com

the scenario being executed) that may require the usage
and combination of different defences in the same website.
For instance, a website may handle user account opera-
tions in-house and outsource payment checkout operations
to third-parties like PayPal. All these operations need
to be protected against CSRF, but while the in-house
ones would trigger same-site requests (i.e., requests that
originate from a website’s domain, to be processed by the
same domain itself), the payment ones will trigger cross-
site requests in the context of a protocol with the third-
party. While CSRF protection for the same-site requests
are usually achieved by means of tokens bound to the user
cookies, the session binding for all the cross-site requests
require ad-hoc protection.
In this paper, we focus on the recent SSC mechanism
and evaluate its impact on CSRF. SSC is an IETF stan-
dard proposal made in 2016 [41], which aims to prevent
certain cookies from being attached to cross-site requests.
Multiple blogs and posts have been published since the
SSC proposal, mainly to welcome this feature as a key
defence against CSRF [20], [26], [30]. Although it has
been already few years since SSC was proposed, the
adoption of the idea by the Chrome browser in 2020
brought it back to light: As of February 2020, Chrome 80
started to enforce SSC by setting any empty SameSite
cookie attribute to Lax by default [29]. (We will refer to
this as the LaxByDefault policy throught the paper). In
some cases, this has been celebrated and advertised as the
death of CSRF [16].
But, does this celebration stands on solid ground? Is
CSRF really dead thanks to the current SSC develop-
ments? Are websites embracing SSC or are they turning it
down? Does it still make sense to invest in devising accu-
rate testing approaches for CSRF? In this paper, we aim
to answer these questions via the following contributions:
(C1) a measurement of the most popular websites to
evaluate their adoption of SSC,

(C2) analysing the potential of SSC to prevent different
types of CSRF vulnerabilities,

(C3) evaluating several websites for CSRF vulnerabilities
with respect to their SSC adoption, and

(C4) presenting guidelines for the web community to
make the best use of SSC.

For (C1), we measure adoption of the SameSite
cookie attribute from January 2020 to March 2020, during
the transition period that Chrome started to enforce the
LaxByDefault policy. We find that most websites continue
ignoring SSC, and some of them partially or completely
disable it. Even for authentication cookies, which are
clearly security sensitive, we see a similar picture. This
shows that browsers’ enforcement of LaxByDefault policy
is critical to benefit from SSC, and it impacts a significant
ratio of cookies and websites.

In (C2), we analyse the ratio of state-changing requests
covered by this policy, using two different datasets, one of
which was borrowed from [4]. We find that around 14%
of such requests are implemented via the GET method,
which undermines the LaxByDefault protection.

We then further look into websites that intentionally
disable LaxByDefault for their authentication cookies in
(C3). We manually test 20 such websites, which we
identified during our study of SSC adoption. We found
several CSRF vulnerabilities on 9 of these sites. These
were responsibly disclosed. All these findings show that,
if properly deployed, SSC with LaxByDefault policy can
be effective against the major CSRF attack scenario. Still,
like any other countermeasure, it is not likely to be a silver
bullet to end CSRF.

Finally in (C4), we propose several guidelines for web
browsers, developers, and security testers to maximise
SSC protection.

2. Background

2.1. Cross-site request forgery

Cross-site requests happen when a site makes the
visitor’s browser send an HTTP request to another site.
Examples of benign uses are Single Sign-On (SSO) and
third-party payment providers (e.g., Paypal, Stripe, etc.).
Cross-site request forgery (CSRF) is an attack where the
attacker triggers the victim browser to send an HTTP
request to a website of the attacker’s choosing. CSRF
attacks can be used e.g., for tracking, but also for using
functionality on other websites if the victim is logged in
there.

From here on, we refer to requests that are not cross-
site as same-site requests.

2.1.1. Pre-authentication vs post-authentication CSRF.
CSRF attacks can be classified as either pre- or post-
authentication, depending on whether the spoofed request
requires the victim to have an already-established authen-
ticated session or not [36]. Post-authentication CSRF is
known at least since 2001 [38] and has received a lot
of attention from the web community. Pre-authentication
CSREF is known since 2008 [2], when its first instance,
referred to as Login CSRF, was introduced.

In post-authentication CSREF, the attacker has the vic-
tim executing actions on the victim’s authenticated ses-
sion. In pre-authentication CSRF, the attacker tricks the
victim into establishing an authenticated session that is
under the control of the attacker. Depending on how the
used site stores user interaction, the attacker can later see
these interactions. For example: search engines typically

allow users to log in to keep track of search history, sites
supporting payment may allow a user to add a credit card
(which is then added to the attacker’s account), etc.

2.1.2. Client-side CSRF. Standard CSRF tricks the vic-
tim’s browser into sending an HTTP request by sending
it specially crafted HTML. Many websites make use of
client-side JavaScript functions that make regular HTTP
requests in the background. Recently, Khodayari et al. [19]
described a new twist on CSRF attacks leveraging such
client-side JavaScript functions. In particular, the attacker
manipulates the input to these functions, causing them
to send the attacker’s desired HTTP request instead of
the intended request. Note that existing CSRF protections,
such as anti-CSRF tokens, operate at a lower level than
JavaScript. Any JavaScript function that makes HTTP
requests thus has to take existing anti-CSRF mechanisms
on the leveraged website into account already. As such,
leveraging a website’s client-side HTTP request functions
to execute a CSRF attack will bypass that site’s CSRF
defences, making this a particular insidious form of a
CSREF attack.

2.2. Same-Site Cookies (SSC)

The SameSite cookie attribute was introduced as
an Internet draft specification in 2016 [41]. The idea of
the attribute is to allow the website to specify under
which conditions a cookie can be sent along with cross-
site requests. This would help protect against CSRF. The
attribute has three options [8]:

e strict: The cookie is only sent along with same-
site requests. Thus, for instance, the initial requests
to the website would not have this cookie appended.

e lax: The cookie is sent along with same-site re-
quests. It is sent with cross-site requests if and only
if the request is a top-level navigation, and it uses a
‘safe’ HTTP method. These are defined in RFC7231:
GET, HEAD, OPTIONS, and TRACE.

« none: The cookie is sent along with both same-site
and cross-site requests. This option basically disables
the SSC defence.

2.2.1. Default treatment for cookies lacking the
SameSite attribute. Initially, if the same-site attribute
is left blank, or contains an invalid value, browsers were to
treat such cookies as if they are set to SameSite=none.
This ensures that the original behaviour of the website will
not be affected by the introduction of SameSite. How-
ever, this setting meant that by default, the new protection
went unused. In 2019, a followup draft specification [39]
proposed that browsers should instead treat absence of
the SameSite attribute as SameSite=1ax. In a further
refinement in 2020 [40], cookies with SameSite=none
were additionally required to use the Secure flag. Both
Firefox [9] and Google [14] announced they would in-
corporate both changes. We refer to this new proposed
browser policy (including rejecting SameSite=none
cookies without a Secure flag) as LaxByDefault to dif-
ferentiate it from the initial NoneByDefault. LaxByDefault
makes SameSite CSRF protection the default for all
cookies. Note that this comes with a cost: cookies without
a specific SameSite attribute will not be available in a

third-party context, potentially affecting current function-
ality.

2.2.2. Timeline of adoption by Chrome. Google started
rolling out LaxByDefault for its Chrome browser on
February 17, 2020 [15], [29]. The initial limited audience
was slowly increased until April 3rd, where the experi-
mental roll-out was halted due to the Covid-19 pandemic.
On July 14th, the roll-out restarted, and on August 11th
it reached 100% of target users (using Chrome 80 and
above). By Chrome 85 (August 25th), this was the default
setting for all users of Chrome. This was also incorporated
into Chromium, the open-source project on which Chrome
and other browsers (incl. Microsoft’s Edge, Opera). These
browsers started rollout with Chrome version 82, becom-
ing default for all users later. For Microsoft Edge, this
happened with version 86, released on October 9th.

3. Adoption of SameSite as defence

In this section, we provide a description of our data
collection process and report about the datasets we created
to measure the adoption of SSC. Within the analysis, we
look at the adoption over time as well as the transition
period. Finally, we zoom in on SSC adoption for security-
sensitive cookies.

3.1. Data collection & categorisation

We measure the adoption of SSC based on cookies
that are served by websites with respect to two aspects: the
overall adoption of this security measure and the reaction
to the switch. While the switch affects all cookies equally,
not all cookies are of equal importance to a website’s
core functionality. Some cookies are security-sensitive
(e.g., session cookies or authentication cookies)!, whereas
others are less so (e.g., language settings). Some security-
sensitive cookies may only be served in the process of
security-sensitive operations, such as logging in. We are
interested in both types, wherefore we tailor our data
acquisition accordingly. In detail, we conduct two different
measurements:

1. Acquiring pre-login data: visiting the landing page
to retrieve generic cookies, including session cookies
for unauthenticated users.

2. Acquiring post-login data: logging in to retrieve the
authentication cookies.

The first measurement provides a straight-forward ap-
proach to acquire cookies. As this can be easily repeated,
we use pre-login scans to gain a finer resolution of
websites during the switch to LaxByDefault. In contrast,
acquiring post-login data is more complex; it requires the
acquisition of credentials and to deep scan sites for login
areas. Hence, we followed a different study design within
the two data acquisitions. We provide a further description
for each individual approach below.

1. Note that session cookies can be distinct from authentication cook-
ies: session cookies keep track of the visitor’s session, while authenti-
cation cookies prove the identity of the user. E.g., having sessions for
unauthenticated visitors is possible.

3.1.1. Acquisition of pre-login data. To periodically ac-
quire pre-login data from websites, we automate a Chrome
browser via Selenium and WebDriver. We use Chrome
v.79, which uses the NoneByDefault policy. This means
cookies will be not automatically set to SameSite=lax
by our client. To capture cookies, we setup the OWASP
ZAP proxy? that stores all HTTP requests and responses.

We conduct seven runs to collect data of the Alexa Top
5K over a period of more than 2 months, starting 15"
of January 2020 (one month before Chrome’s switch).
To account for developments since then, we conducted
another run once in April 2021 (15 months after the first
scan). Each run consists of two visits of a single site to
account for variations in served cookies by a site. The
two resulting cookie sets are then merged into one set
and already existing cookies are discarded. During each
visit, we employ the selenium driver within our python
framework to fully load sites under a timeout of 300
seconds. All measurements were run from a company
network. For this work, we consider only the data from
websites that we successfully visited in our seven runs.
This leaves us with data from 3,534 websites.

3.1.2. Acquisition of post-login data. To gather data,
we use Shepherd [17], a tool that can automatically log
in on websites to perform data acquisition in post-login
parts of sites. For that, Shepherd requires a database with
credentials, which we acquired for 56,437 websites by
feeding domains from the Tranco list [31] into Bug-
MeNot?; a service offering crowed-sourced credentials.
Note that BugMeNot’s crowd-sourced data is not verified.
The authors of Shepherd [17] found roughly 60% of cre-
dentials will be invalid in their work. Further other failure
modes (unreachable sites, CAPTCHA, etc.) additionally
lower the success rate. In our data collection, Shepherd
successfully collected data from 6,180 websites. Our data
acquisition happened in two runs, between April 3, 2020
and May 18, 2020.

Finally, BugMeNot contains credentials throughout the
entire Alexa Top 1M websites. Still, as a crowd-sourced
resource, it is dependent on user input, which is expected
to favour more popular sites. Indeed, in a previous study
using Shepherd [17], a large portion (79%) of the har-
vested credentials belonged to sites with ranks in the top
500K. Our dataset shows with 75% a similar distribution.

3.1.3. Selecting security-sensitive cookies. To separate
security-sensitive cookies from other cookies, we use an
individual method for the pre- and post-login dataset.
For the post-login dataset, we let Shepherd automatically
determine which cookies are authentication cookies. For
that, Shepherd tests after logging-in whether the removal
of a cookie breaks a session. However, the iterations
needed to find all possible combinations of authentication
cookies is known to grow exponentially [5], wherefore
Shepherd relies on the algorithms proposed by Calzavara
et al. [6] and Mundada et al. [25] to improve runtime
performance.

In contrast, when running our pre-login data col-
lection, we cannot leverage an authenticated session to

2. https://www.zaproxy.org/
3. http://bugmenot.com

https://www.zaproxy.org/
http://bugmenot.com

deduct session cookies. Thus, we fallback to heuristics to
select session cookies as proposed in earlier studies [37],
[12]. Specifically, we interpret a cookie as session cookie,
when (i) the cookie name contains a known case insen-
sitive session cookie string, such as sess, sessid,
session, cfid, cftoken and (ii) the cookie value
exceeds either the entropy of 3.45, or the length of 69
characters (cf., [37]).

3.1.4. Categorisation of sites. Each cookie plays a differ-
ent role in a website’s functionality. Therefore, a website
need not handle all cookies equally. For example, authen-
tication typically relies on cookies, and thus a website’s
authentication process may not work in browsers using
LaxByDefault. A website will need to address this, e.g. by
setting all authentication cookies to SameSite=none,
while leaving other cookies unchanged. Alternatively they
may choose to set all their cookies to none to simplify
the update, or may choose to update their authentication
process to incorporate SSC, etc. Therefore, we categorise
websites according to how they handle the SameSite
attribute across their cookies:

 Ignoring: These websites never set any value for the
SameSite attribute of their cookies, leaving it to
the default behaviour of the browser.

o Partially disabling: These websites set some of their
cookies’ SameSite attribute to none, partially dis-
abling the browser provided defence. They never use
lax or strict.

o Completely disabling: These websites set all their
cookies’ SameSite attribute to none, completely
disabling the browser provided defence.

e Partially adopting: These websites set some of their
cookies’” SameSite attribute to lax or strict,
partially adopting the samesite defence. They never
use none.

o Fully adopting: These websites set all their cookies’
SameSite attribute lax or strict, fully adopting
the samesite defence even when it is not enforced by
the browser.

e Mixed strategy: These websites use both adoption
related values (strict or lax), as well as the
disabling feature none.

Note that the categorisation captures the intention of
websites with respect to the SameSite attribute, regard-
less of whether they were able to correctly implement
this intended behaviour. For instance, a cookie that has
SameSite=none value may not have the Secure flag
set correctly. This means that the cookie will not be sent
along with third-party requests. We ignore such contra-
dictory cases in our categorisation. We will report more
on this in Section 3.2.4. Finally, it is important to keep in
mind that the categorisation of any individual website can
change over time, as it changes the SameSite attribute
for its cookies.

3.1.5. Limitations. Note that there are some limitations
stemming either from our methodology or the execution
of the experiments.

First, either datasets will fail to cover all types of web-
sites. Due to our company firewall, we assume that sites
falling into categories like entertainment, adult content,

or malicious sites will be underrepresented in the pre-
login dataset. Our post-login dataset was not collected
from behind the same firewall. Nevertheless, it is also not
complete, due to its crowd-sourced nature. Credentials for
sites that are valuable to users are unlikely to be shared
(e.g., banks). Moreover, BugMeNot prohibits sharing of
accounts that allow access to paid content or to circumvent
age restrictions.

Finally, our selection of security-sensitive cookies for
the pre-login dataset relies on heuristics. An evaluations
by Calzavara et al. [5] has shown that heuristics are fairly
limited in correctly identifying session cookies.

3.2. Adoption on pre-authentication cookies

3.2.1. The transition period. We start by looking at
websites’ reaction to the new LaxByDefault policy an-
nouncement by Chrome for the time between January 15
and March 30, 2020. Figure 1 shows the adoption on
(a) first-party and (b) third-party cookies (collected from
3,534 websites), respectively.

For the first-party cookies, applying a two-tailed z-test
for two population proportions, we measure a significant
decrease on websites ignoring the SameSite attribute (z-
score = 9.0021, p-value < 0.00001) and a significant in-
crease in websites that are partially disabling SameSite
(z-score = 27.9684, p < 0.00001). Moreover, we observe
a slight increase in the mixed strategy (4.5%).

For third-party cookies, we see a similar picture as
above. The number of websites ignoring the SameSite
attribute significantly drops by 10% (z-score = 12.1145,
p-value < 0.00001) and sites following a mixed strategy
increase by 4.5%. However, this time we find an increase
in websites that completely — instead of partially — disable
SSC (z-score = -15.4946, p-value < 0.00001). This makes
sense, considering that the third-party cookies often relate
to analytic, tracking or advertisement purposes, and thus
websites need to send these in cross-site requests.

Overall, we observe that only around 10% of websites
reacted to the LaxByDefault switch by changing their
SameSite adoption strategy, and the most common re-
action was to partially disable it for first-party cookies,
and to completely disable it for third-party cookies.

By considering cookies instead of sites, we can gain an
estimate of the cookie ratio that would be automatically
upgraded by the LaxByDefault enforcement. In January
2020, we count that 96% of first-party cookies and 52% of
third-party cookies leave the SameSite value undeclared,
which would later result in upgraded to 1ax. This cover-
age decreases to 92% for first-party cookies and to 28%
for third-party cookies over the transition period. How-
ever, when we include cookies that were upgraded directly
by sites, e.g., by setting SameSite to lax or strict,
we see an almost equal protection as at the beginning of
our measurements (96% of first-party cookies and 45% of
third-party cookies).

3.2.2. Session cookies first-party cookies. Next, we take
a closer look at the first-party cookies that are likely to be
session cookies. We base this analysis on the assumption
that these cookies are used for the session management
within the post-authentication phase, and are therefore
security-sensitive.

70%

60%

50%

40%

30%

20%

10%

o
0% - — — ———— @o—— —- L)

—®— Ignoring

Part. adopting

(a)

-®- Part. disabling

40%

30%

20%

10%

N b
SRS o NS 3
SIS S S L S S
—®— Compl. disabling =@ Fully adopting —® - Mixed
(b)

Figure 1. Timeline of SameSite adoption on (a) first-party cookies and (b) third-party cookies with respect to the ratio of websites. Note that there
is a 13-months gap between the last two data points on the x-axis (i.e., 2020-0-30 to 2021-04-28), depicted by the vertical grey line.

Based on selection criteria described in Section 3.1.3,
we identify candidates for session cookies on 1,480 web-
sites. Among all scans, on average, a website has 1.94+1.4
cookies that are likely to carry session identifiers. Figure 2
shows the SameSite adoption rate on these cookies. We
can see that, while in January 2020 98% of websites were
ignoring SameSite, this ratio dropped to 90% by the
end of March 2020. The most common reactions were
either to completely disable (7.4% increase), or to fully
adopt (5.1% increase) SameSite. Thus, the 7.4% of the
websites that completely disable the SSC defence might
be susceptible to security issues.

3.2.3. Overall adoption over time. We contrast our data
from the switch period with a new scan from April 2021
(13 months later) to gain a long term perspective. Our
comparison shows a clear trend in the adoption of SSC.

For both, first-party and third-party cookies (see Fig-
ure 1), websites ignoring SSC have further decreased
within the last 13 months, but slower than during the
transition period. Overall, 51% of websites directly benefit
from Chrome’s LaxByDefault enforcement for the first-
party cookies. Among the rest of the websites, the most
common strategies are partial adoption and partial dis-
abling.

3.2.4. Implementation issues with respect to
SameSite=none. Here, we focus on the cookies
with SameSite=none value, for which the Secure
flag is not properly set. It is possible that some websites
initially fail to properly implement this behaviour.
However, as their cookies will be rejected, they will need
to fix it to achieve their intended behaviour. Figure 3
shows the timeline of the ratio of websites that have
improperly configured SameSite=none cookie, both
for first and third party cookies.

Considering the first party cookies, the ratio of web-
sites remain more or less constant, fluctuating between
0.7% and 3%. We assume that these websites do not
experience a significant breakage due to this.

Considering the third party cookies, we observe
that initially almost half of the websites we analyze
had misconfigured third party cookies with respect to
SameSite=none. However, these were rapidly fixed,
and by March 2020, only 3% of websites are affected
by this. We can again assume that such misconfigured
third party cookies do not cause a significant problem in
functionality.

3.3. Adoption on authentication cookies

We now look at our dataset that we retrieved from
post-login areas to investigate the use of SSC for au-
thentication cookies. Table 1 shows the ratio of websites
in each category of SameSite adoption. We observe
that most of the websites do not take any action on
their authentication cookies, while only a small portion
(~4%) protects all their authentication cookies either by
using lax or strict. Moreover, around 2.8% of the
websites disable SSC completely. These websites offer
an interesting vantage point to study, as it is unclear if
they use other sorts of CSRF protections while disabling
SameSite. We will have a closer look into this in the
next section.

TABLE 1. WEBSITES’ USAGE OF THE SAMESITE ATTRIBUTE ON
AUTHENTICATION COOKIES.

Number of websites

Total 6,180 100.0%
Ignoring 5,704 92.3%
Partially disabling. 35 0.5%
Completely disabling 116 1.9%
Partially adopting 55 0.9%
Fully adopting 259 4.2%
Mixed strategy 11 0.2%

4. Impact on CSRF

In this section, we follow two goals. First, we aim to
explore the potential of SSC to protect websites against

98%

95%

92%

90%

88%

85%

82%

o o o ©

&P o o8 0P
OV ©° ©° @ o

DS SO M

—®— Ignoring

()

8%

I .’
i ,/'/,,0
6% vy
V7
W/
o
4% o §
. i
T B :
- - 1
2% e - |
o ! R
7~ R
P SR o-——-- *“~~ |,// _
00| Eo-meca-—= 8T el D g T L
SN St A N 2 oS
9 E\ SN\ S A A

L I
Part. adopting =@ Fully adopting
~®- Part. disabling —® - Mixed
—@— Compl. disabling

(b)

Figure 2. Timeline of SameSite adoption on first-party cookies that relate to pre-authentication session IDs: (a) shows the Ignoring strategy, (b)
shows the rest. Note that there is a 13-months gap between the last two data points on the x-axis.

50% ;

!

40% i

!

30% i

!

20% i

!

10% i
0% 0/._——.\0—0——?—0

% Q A N © Q
& 3P oS 0 N P W

Qo o o Qo o Q" N

PSRN M N SN N

—®— First party Third party

Figure 3. Timeline of SameSite=none misimplementation: showing
the ratio of websites that have at least one SameSite=none cookie,
without setting the Secure flag. Note that there is a 13-months gap
between the last two data points on the x-axis.

CSRF under real-world conditions. Second, we investigate
if there are specific reasons for websites to completely
disable SSC, and what are the possible consequences of
this in terms of CSRF vulnerabilities.

For the first goal, we need to identify the state-
changing requests, as these are the potential targets for an
attacker to conduct CSRF attacks. However, identifying
state-changing requests is a non-trivial task. First, an
evaluator should explore the website to discover sensitive
functionality that an attacker could potentially exploit.
Next, the evaluator must interact with the website to
trigger the sensitive functionality and identify the cor-
responding state-changing request among various other
requests. As this process does not scale with the number
of sites we considered during our measurements, we use
additional datasets where state-changing requests were

already flagged.

For the second goal, we use our findings from Sec-
tion 3.3, where we identified the websites that set all their
post-login authentication cookies to none (i.e, completely
disabling SameSite defence). We used these websites
for a preliminary evaluation on vulnerability to CSRF.

4.1. Potential of SSC defence

We now analyse if state-changing requests, as occur-
ring in the wild, would be potentially protected by SSC.

As mentioned earlier, we base our analysis on exist-
ing datasets to reach broader coverage. In particular, we
use the following two datasets: Dataset D-I is publicly
available and was created by Calzavara et al. [4] in 2017.
To build this set, the authors manually traversed top
ranked websites that provide a login. They further tagged
(post-authenticated) state-changing requests among other
requests as they used it to train a classifier. Our copy
of this dataset* contains 6,204 HTTP requests from 51
websites of which 924 requests were marked as state-
changing. The second set D-II is a manual collection that
we created during earlier experiments in 2019°. Here, we
also take pre-authentication scenarios into account (not
considered in D-I). To build this set, we analysed a set of
47 websites, which consist of major e-commerce sites and
sites belonging to common categories, such as entertain-
ment software, news, etc. For 24 of these sites, we focused
on the pre-authentication phase collecting HTTP requests
related to login scenarios (some based on single sign-on),
while the remaining 23 were analysed during the post-
authentication phase where we collected HTTP requests
related to a variety of operations including creation of
a new invoice, the addition of a new administrator, data
deletion, etc. More than 2000 HTTP requests were gath-
ered and manually inspected by us to flag those associated

4. Our copy was extracted from https://github.com/alviser/mitch.
5. The dataset is available at https://github.com/compaluca/scr.

https://github.com/alviser/mitch
https://github.com/compaluca/scr

TABLE 2. POTENTIAL PROTECTION ON POST-AUTHENTICATION
STATE-CHANGING REQUESTS

Dataset request GET POST DELETE SSC po-
/ PUT tential
DI same-site 112 758 36 88%
B cross-site 9 7 2 0%

potential protection over D-I (6,204 requests over 51 websites): 86%

same-site 5 52 4 92%

D-l cross-site 0 6 0 0%

potential protection over D-II (1,665 requests over 23 websites): 78%

Combined 126 823 42 86%

to state-changing actions. In total, set D-II includes 67
HTTP requests flagged as state-changing requests.

In the below analysis of D-I and D-II, we differentiate
between potential state-changing actions executed before
and after authentication.

4.1.1. Pre-authentication (D-II). For the 24 websites
used for pre-authentication scenarios, we only focused on
login related operations either based on standard form-
based login (11 websites) or single sign-on (SSO) with
an external identity provider (13 websites).

The latter category is clearly cross-site and it requires
thus ad-hoc defences going beyond SSC and depending
on the specific cross-site scenario. In our case, all tests
targeted SSO scenarios based on the OAuth2 protocol
whose protection against CSRF relies mainly on ensuring
the state parameter is properly used to ensure session
binding between different protocol steps.

The 11 websites featuring form-based login scenar-
ios all used a simple POST request to send the user
credentials. It shall be noticed that these scenarios can
be protected via SSC defence. For instance, the web-
site could simply use the session ID cookie that is set
even before authentication. If this cookie is not having
samesite=none and the website rejects login requests
not having that session ID cookie, then the login operation
cannot be triggered from a cross-site request crafted by an
attacker.

Besides login, pre-authentication scenarios target reg-
istration and account validation. The latest one normally
amount to execute a cross-site scenario where the user is
required to validate a URL (with an non-guessable token)
received by email. This it thus out-of-scope for SSC.
On the other hand, the SSC-based defence explained for
form-login would work also for form-based registration
scenarios.

4.1.2. Post-authentication (D-I and D-II). Table 2
overviews the state-changing requests per HTTP method
extracted from datasets D-I and D-II. We separated these
further into same-site and cross-site requests. In total, we
count 991 (794 for D-I and 56 for D-II) state-changing
requests, most of which are non-GET same-site requests
(~86%). These are the kind of state-changing requests
where SSC has the potential to prevent CSRF-attacks. A

web server with cookie-based sessions® will reject these
requests if the authentication cookies are not transmitted
due to SSC protection.

Considering the SSC adoption ratio from Section 3
and assuming that ratio can be transposed to the websites
of datasets D-I and D-II, we can estimate:

« for users navigating with browsers using LaxByDe-
fault (around 51.6% of all users, combining the fig-
ures from browser compatibility for SSC [24] with
those on browser usage [34], see Appendix A for
more details), SSC would be quite effective to protect
most of those requests (~84%)-86%*(100%-1.9%)—
as only a minority of websites (1.9%, cf. Table 1)
disable completely SSC over authentication cookies
in same-site scenarios.

« for users navigating with browsers not using LaxBy-
Default, SSC protection would drop significantly to
only ~5% (~86%*(100%-1.9%-92.3%)), as most of
the websites (92.3%, cf. Table 1) ignore SSC over
authentication cookies in same-site scenarios.

The remaining ~14% relate with state-changing re-
quests that are cross-site and/or executing the GET method
(cf. Table 2). For these requests SSC is not effective to
prevent CSRFE. Let us dig a bit more into these requests.

« in general, GET requests should not be used to per-
form state-changing actions. We analysed the GET
requests in dataset D-I and most of those requests
would be better served by a POST. For instance,
~30% of those GET requests relate with logout op-
erations, that should rather be triggered via a POST
as explained in many blogs and guidelines for web
developers e.g., [33].

« for the remaining non-GET cross-site requests, indeed
specific defences should be put in place to protect the
state-changing actions from CSRF. In our small set
of cross-site requests, they all relate to user account
actions with a third-party identity provider.

4.2. Websites disabling SSC: risk of CSRF

From previous sections, it is clear that SSC has the
potential to prevent CSRF for the vast majority of same-
site scenarios. However SSC has been introduced only in
2016, almost 15 years after initial discoveries of CSRF,
so that websites have most likely already implemented
other defences against CSRF. This could be one reason
why some websites may decide to ignore or even disable
SSC. Another possible reason is when a website exposes
an API to serve itself as well as other external websites,
thus answering cross-site requests.

Considering the data collected for SSC adoption (cf.
Section 3.3), we take a closer look into some of those
websites that completely disable SSC, in order to under-
stand (i) the reasons behind that choice and (ii) whether
the CSREF risk was well considered.

Our dataset contains 116 such websites. We analyse
the first 20 of them manually to see if they are susceptible
to CSRF attacks or if they use other protection mecha-
nism. For 9 of the websites (~45%), we were able to

6. Note that some websites do not rely on cookies for user authenti-
cation. As we did not encountered such cases, we believe that this rather
rare.

identify at least one CSRF vulnerability. These are mainly
related to user account operations such as changing the
user’s basic information (7 cases), changing the email
address (3 cases), deleting the account (1 case), and
updating the password (1 case). Other cases relate to other
kind of operations such as sending emails among website
members, managing blogs and projects, etc. However, why
these websites disable SSC remains a difficult question to
answer. For 3 websites we noticed that they expose some
APIs to handle user account operations, but for the other
17 websites we did not see any particular reason justifying
the disabling of SSC.

5. Guidelines

We refactor the observations from previous sections to
offer some practical guidelines for web browsers, develop-
ers, and testers in the web community. For users, options
to address SameSite are limited. The main action they
can take is to use an up-to-date browser, see Appendix A.

5.1. Web browsers

From a security point of view there is no doubt that
web browsers should support SSC and enforce LaxByDe-
fault as default policy. However we miss in this respect
data about other dimensions and mainly about the impact
of this default policy over breakages in websites. It is very
likely that browser vendors have some visibility on those
data and it would be great to have them shared with the
community.

5.2. Web developers

Web developers are invited to not disable SSC, over
their authentication cookies in particular, unless they have
a very strong reason to do so.

Rather than ignoring SSC (i.e., cookies are set without
the samesite attribute) and leaving the default policy
to browsers, web developers are encouraged to take an
active role and define which values of samesite better
suit their authentication cookies.

Web developers should also be aware that although
SSC can contribute significantly in fighting CSRE, it is
not effective in all scenarios. Assuming the website is
adopting SSC properly, its effectiveness against CSRF is
limited to same-site scenarios not using GET requests.
We encourage web developers to inspect all their state-
changing actions and perform the following:

e Minimise GET: If any of those state-changing ac-
tions involve GET requests, consider changing those
requests into POST, PUT, etc. A classical example in
this respect is the logout action that is often triggered
via a GET, while a POST is recommended.

o Protect cross-site scenarios: Cross-site scenarios
require specific CSRF protection that goes beyond
SSC. Web developers are thus encouraged to check
if they have cross-site scenarios in place and, in case,
use the right defence among the ones suggested by
the community for the specific cross-site scenario.

o Beware of pre-authentication CSRF: Pre-
authentication state-changing scenarios are often

overlooked by the web development community
leaving many websites vulnerable to the variant
of login CSRF. For those vulnerable websites, an
attacker can authenticate victims under accounts
owned by the attacker herself, enabling, e.g., the
attacker to spoof victim activity in the website.
The good news is that there are only few pre-
authentication scenarios that needs to be protected,
namely registration, account validation and login.
We encourage web developers to follow standard
guidelines to protect these few scenarios.

« Beware of client-side CSRF: Client-side CSRF is
a quite recent variant of CSREF, first identified in
2018 [1]. The root cause for this variant is client-
side JavaScript code executing asynchronous HTTP
requests whose URL is not sanitised and can be
manipulated by an attacker. Web developers are en-
couraged to identify those JavaScript code areas and
to ensure they are properly protected.

5.3. Testers

Here we discuss how the testing strategy for CSRF
can be made more effective by considering the recent
SSC defence. Given a website, the following steps can
be performed (ordered by priority):

Testing for post-authentication state-changing actions:

« Inspect authentication cookies (absence of one of
these cookies makes the website lose the authenti-
cated session) and check whether all of them are
having samesite=none.

o If this is the case the website is opting-off SSC
defence and thus the full-fledged standard testing
strategy for CSRF should be applied (see next section
for some experiment in this respect).

o Otherwise, the tester can save a lot of time by fo-
cusing only on (i) client-side CSRF, (ii) cross-site
scenarios, and (iii) state-changing actions awkwardly
triggered by GET HTTP requests.

o Indeed for all the other state-changing actions, the
SSC defence will be sufficient to prevent CSRFE.

From the data we analysed the majority of websites
could get advantage of this simplified testing strategy, re-
channelling the testing effort over

« state-changing actions using, for whatever reasons,
the GET method. Our data comprises ~12% of such
state-changing requests;

« cross-site scenarios. Likely very few, according to our
data (~2.4%);

o JavaScript code sending HTTP requests to mitigate
the risk of client-side CSRF. We do not have figures
in that respect from our data, but the study done in
[19] provides scary numbers.

Testing for pre-authentication state-changing actions:
While post-authentication state-changing actions rely al-
most by construction on authentication cookies, the same
does not apply for pre-authentication ones, though nothing
would prevent the web development community to go in
that direction to take advantage of SSC defence in this
context as well. Cross-site scenarios would still need to
be tested apart, but same-site scenarios would be covered.

For the moment, however, the testing strategy for pre-
authentication shall stay the same and the tester shall thus
inspect that the registration, account validation and login
operations are correctly implemented free of CSRF.

6. Related work

At the best of our knowledge, there is no other study
in literature about SSC and its impact on CSRF. However,
there is a extensive literature on both (i) CSRF and (ii)
measuring security relevant HTTP attributes. Hereafter we
discuss those.

6.1. CSREF related studies

CSRF is a long-standing issue, initially being men-
tioned in online forums around 2 decades ago [22]. There
have been several defence mechanisms proposed by aca-
demic community since then. One of the first studies
by Jovanovic et al. [18] proposes a server-side proxy
to automatically add and validate CSRF tokens within
requests. A later study aims to use heuristics to infer
user intention (e.g., clicking a link, entering in address
bar) and to remove the authentication tokens from the
security sensitive requests in certain scenarios [22]. In a
similar vein, De Ryck et al. [11] tries to infer if a website
has explicitly delegated control to another website for
certain cross-site scenarios. If such a “trusted delegation”
does not exist, authentication tokens are stripped from the
request. Another study [10] proposes a browser extension
that allows to define and enforce a policy for cross-site
requests, such as allowing, blocking or allowing without
authentication token. Such browser enforced policy can be
considered similar to the LaxByDefault policy.

On the other hand, some studies focus on automat-
ically discovering the CSRF vulnerabilities in websites.
For instance, Deemon [28] aims to identify state-changing
requests via dynamic analysis and property graphs that
include data flows and execution traces. These candidate
requests are then tested for CSRF. A more recent study [4]
aims to identify CSRF vulnerabilities with machine learn-
ing, using a set of manually labeled state-changing re-
quests.

Finally, certain studies focus on the relatively unknown
or new types of CSRF attacks. In particular, the client-
side CSRF attacks have been recently introduced in [19].
In there the authors explicitly mentioned that SSC would
not be effective against client-side CSRF. Moreover, [36]
makes a large scale analysis of pre-authentication CSRF
vulnerabilities.

6.2. Large-scale measurements on security rele-
vant attributes

There has been various work studying cookie at-
tributes, security relevant HTTP headers, and browser
security features. For instance, Mendoza et al. [23] con-
trasted security-related fields in HTTP headers between
mobile and desktop browsers and found inconsistencies
between them. In contrast, Cahn et al. [3] conducted a
large-scale study of cookies, collecting 3.2M cookies from
Alexa Top 100K sites. They found that the amount of

third-party cookies is two times larger than first-party
cookies, and a small number of entities are able to ag-
gregate user information across 75% of the web. Stock et
al. [35] analysed the use of security headers for a 10 years
period (2006-2016) based on the Internet Archive. Their
study does not consider the SameSite attribute, as this
defence was introduced later.

Franken et al. [13] evaluated browser implementations
to secure third-party cookies with tracking protection
mechanisms, but also with the SameSite attribute. They
find that browsers (Chrome+Opera and Edge) can violate
the SameSite policies (they send cookies, even it was
lax or strict), due to faulty implementations.

Luo et al. [21] studied which security features are
supported by mobile browsers. They found that some
mobile browsers do not support SameSite functionality,
leaving web users without protection. In addition, they
scanned the landing pages of sites within the Alexa Top
50K and found that only 93 of them make use of the
SameSite attribute.

Calzavara et al. [7] found inconsistencies emerging
from the multiple client-enforced security policies de-
ployed through HTTP headers. SSC is among the studied
policies. Their data collection encompasses a single scan
of 15,000 sites without logging in in Q1 2020. Thought
their goal is not measuring adoption of SSC, their figures
in that respect are in line with ours: Too few cookies (5%
in their study) use SSC.

Finally, Sanchez-Rola et al. [32] studied timing attacks
on cookies to expose web users’ browsing history. In the
course of their investigation, the authors measured the use
of the SameSite cookie attribute as a defence against
these attacks. As their analysis is tailored to one specific
type of cookies, the overall adoption cannot be derived
from their work. Nevertheless, the results of the presented
subset provides some insights about the adoption in 2019:
Settings like none and strict were rarely used, while
sites that set the SameSite attribute typically used lax
for a smaller portion of their cookies. The majority of
sites left this option unset.

7. Conclusions

In this paper, we presented a preliminary study on
the effectiveness of the recently introduced SameSite
attribute and LaxByDefault policy to protect against CSRF
in practice. We find that when browsers employ the
LaxByDefault policy, SSC defence can be very effective,
in particular in preventing CSRF against same-site state-
changing actions that take place after authentication, and
not triggered via the GET method. However, there are still
certain CSRF variants that are not covered by SSC, and
that should not be neglected. In particular, cross-site state-
changing scenarios and client-side CSRF attack need to
be addressed on their own, as SSC cannot prevent them.
Finally, we provide a number of guidelines for the web
community that, if implemented, would strengthen the
fight against CSRF, taking also advantage of the SSC
defence.

Future work. Given the preliminary nature of our
investigation, we see various directions to expand our
research. First, we plan to extend our evaluation for
the impact on CSRF in the wild. For that, we consider

exploring more specific cases that we identified during
this work. In particular, we would like to investigate more
websites that completely disable SSC and include websites
that rely on third-party identity providers. Second, we
plan to expand our study to include the time period
before the beginning of our measurements. Therefore, we
have already started to incorporate data from the Internet
archive. Finally, SSC has the potential to break website
functionality. Studying the different cases of breakage and
how browser vendors handled this situation in general
could provide useful insights for the introduction of new
security features in the future.

Acknowledgements. We are grateful for the com-

ments by the anonymous reviewers, which helped improve
the paper significantly.

References

(1]

(2]

(4]

(]

(6]

(71

(8]

[9]

[10]

(1]

[12]

Client-side CSRF at Facebook. https://www.facebook.com/notes/
facebook-bug-bounty/client-side-csrf/2056804174333798/, 2018.
Accessed July 19, 2021.

Adam Barth, Collin Jackson, and John C. Mitchell. Robust de-
fenses for cross-site request forgery. In Proceedings of the 15th
ACM, CCS ’08, pages 75-88, New York, NY, USA, 2008. ACM.

Aaron Cahn, Scott Alfeld, Paul Barford, and S. Muthukrishnan.
An empirical study of web cookies. In Proceedings of the 25th
International Conference on World Wide Web, WWW ’16, page
891-901, Republic and Canton of Geneva, CHE, 2016.

Stefano Calzavara, Mauro Conti, Riccardo Focardi, Alvise Rabitti,
and Gabriele Tolomei. Mitch: A machine learning approach to the
black-box detection of CSRF vulnerabilities. In IEEE European
Symposium on Security and Privacy, EuroS&P 2019, Stockholm,
Sweden, June 17-19, 2019, pages 528-543. IEEE, 2019.

Stefano Calzavara, Gabriele Tolomei, Michele Bugliesi, and Salva-
tore Orlando. Quite a mess in my cookie jar!: leveraging machine
learning to protect web authentication. In Proceedings of the 23rd
International Conference on the World Wide Web, WWW’14, pages
189-200. ACM, 2014.

Stefano Calzavara, Gabriele Tolomei, Andrea Casini, Michele
Bugliesi, and Salvatore Orlando. A supervised learning approach
to protect client authentication on the web. ACM Transactions on
the Web, TWEB, 9(3):15:1-15:30, 2015.

Stefano Calzavara, Tobias Urban, Dennis Tatang, Marius Steffens,
and Ben Stock. Reining in the web’s inconsistencies with site
policy. In 28th Annual Network and Distributed System Security
Symposium, NDSS 2021, February 2021.

Lily Chen, Steven Englehardt, Mike West, and John Wilander.
Cookies: HTTP State Management Mechanism. Internet-Draft
draft-ietf-httpbis-rfc6265bis-08, Internet Engineering Task Force,

June 2021. https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-
rfc6265bis-08.
Mike Conca. Changes to SameSite Cookie Behavior — A Call

to Action for Web Developers. https://hacks.mozilla.org/2020/
08/changes-to-samesite-cookie-behavior/, 2020. Accessed July 19,
2021.

Philippe De Ryck, Lieven Desmet, Thomas Heyman, Frank
Piessens, and Wouter Joosen. CsFire: Transparent client-side miti-
gation of malicious cross-domain requests. In Engineering Secure
Software and Systems, ESSoS, pages 18-34, Berlin, Heidelberg,
2010. Springer Berlin Heidelberg.

Philippe De Ryck, Lieven Desmet, Wouter Joosen, and Frank
Piessens. Automatic and precise client-side protection against
CSRF attacks. In European Symposium on Research in Com-
puter Security, ESORICS, volume 6879, pages 100-116. Atluri,
V, Springer, 2011.

Philippe de Ryck, Nick Nikiforakis, Lieven Desmet, Frank
Piessens, and Wouter Joosen. Serene: self-reliant client-side pro-
tection against session fixation. In Proceedings of the 12th IFIP
International Conference on Distributed Applications and Inter-
operable Systems, volume 7272 of LNCS, pages 59-72. Springer,
2012.

10

[13]

[14]

(15]

(16]

(17]

[18]

(19]

(20]

(21]

[22]

(23]

[24]

(25]

[26]

(27]

(28]

[29]

(30]

[31]

Gertjan Franken, Tom van Goethem, and Wouter Joosen. Who
left open the cookie jar? A comprehensive evaluation of third-
party cookie policies. In USENIX Annual Technical Conference,
USENIX ATC 2019. USENIX Association, 2019.

Google. Developers: Get Ready for New SameSite=None;
Secure Cookie Settings. https://blog.chromium.org/2019/10/
developers-get-ready-for-new.html, 2019. Accessed July 19, 2021.

Google. Samesite update. https://www.chromium.org/updates/
same-site, 2019, Accessed July 19, 2021.

Scott Helme. CSRF is (really) dead. https://scotthelme.co.uk/
csrf-is-really-dead/, 2019. Accessed July 19, 2021.

Hugo Jonker, Stefan Karsch, Benjamin Krumnow, and Marc
Sleegers. Shepherd: a generic approach to automating website
login. In Proceedings of the 2nd Workshop on Measurements,
Attacks and Defenses for the Web (MADWEB’20), pages 1-10.
IEEE, 2020.

Nenad Jovanovic, Engin Kirda, and Christopher Kruegel. Prevent-
ing cross site request forgery attacks. In SecureComm, pages 1-10.
IEEE, 2006.

Soheil Khodayari and Giancarlo Pellegrino. Jaw: Studying client-
side CSRF with hybrid property graphs and declarative traversals.
In 30th USENIX Security Symposium (USENIX Security 21), Van-
couver, B.C., August 2021. USENIX Association.

Sjoerd Langkemper. Preventing CSRF with the same-site
cookie attribute. https://www.sjoerdlangkemper.nl/2016/04/14/
preventing-csrf-with-samesite-cookie-attribute/, 2016. Accessed
July 19, 2021.

Meng Luo, Pierre Laperdrix, Nima Honarmand, and Nick Niki-
forakis. Time does not heal all wounds: A longitudinal analysis of
security-mechanism support in mobile browsers. In 26th Annual
Network and Distributed System Security Symposium, NDSS 2019.
The Internet Society, 2019.

Ziqing Mao, Ninghui Li, and Ian Molloy. Defeating cross-site
request forgery attacks with browser-enforced authenticity protec-
tion. In Proceedings of the 10th Annual Information Security
Symposium, CERIAS °09. CERIAS - Purdue University, 2009.

Abner Mendoza, Phakpoom Chinprutthiwong, and Guofei Gu.
Uncovering HTTP header inconsistencies and the impact on desk-
top/mobile websites. In Proceedings of the 27th International
Conference on World Wide Web 2018, WWW ’18, page 247-256,
Republic and Canton of Geneva, CHE, 2018.

Mozilla. Browser compatibility. https://developer.mozilla.org/
en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite#browser_
compatibility, 2021, Accessed July 19, 2021.

Yogesh Mundada, Nick Feamster, and Balachander Krishnamurthy.
Half-baked cookies: Hardening cookie-based authentication for the
modern web. In the 11th ACM Asia Conference on Computer and
Communications Security, AsiaCCS, pages 675-685. ACM, 2016.

Netsparker. Using the Same-Site cookie attribute to prevent
CSRF attacks. https://www.netsparker.com/blog/web- security/
same-site-cookie-attribute-prevent-cross-site-request-forgery/,
2020. Accessed July 19, 2021.

OWASP. Owasp Top Ten. https://owasp.org/www-project-top-ten/,
2017. Accessed July 19, 2021.

Giancarlo Pellegrino, Martin Johns, Simon Koch, Michael Backes,
and Christian Rossow. Deemon: Detecting CSRF with dynamic
analysis and property graphs. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security,
CCS 2017, pages 1757-1771. ACM, 2017.

Chrome Platform. Cookies default to SameSite=Lax. https:
/Iwww.chromestatus.com/feature/5088147346030592, 2020. Ac-
cessed July 19, 2021.

Chrome Platform. Defending against CSRF with SameSite cook-
ies. https://portswigger.net/web- security/csrf/samesite-cookies,
2021. Accessed July 19, 2021.

Victor Le Pochat, Tom van Goethem, Samaneh Tajalizadehkhoob,
Maciej Korczynski, and Wouter Joosen. Tranco: A research-
oriented top sites ranking hardened against manipulation. In
26th Annual Network and Distributed System Security Symposium,
NDSS 2019. The Internet Society, 2019.

https://www.facebook.c om/notes/facebook-bug-bounty/client-side-c srf/2056804174333798/
https://www.facebook.c om/notes/facebook-bug-bounty/client-side-c srf/2056804174333798/
https://hacks.mozilla.org/2020/08/changes-to-samesite-cookie-behavior/
https://hacks.mozilla.org/2020/08/changes-to-samesite-cookie-behavior/
https://blog.chromium.org/2019/10/developers-get-ready-for-new.html
https://blog.chromium.org/2019/10/developers-get-ready-for-new.html
https://www.chromium.org/updates/same-site
https://www.chromium.org/updates/same-site
https://scotthelme.co.uk/csrf-is-really-dead/
https://scotthelme.co.uk/csrf-is-really-dead/
https://www.sjoerdlangkemper.nl/2016/04/14/preventing-csrf-with-samesite-cookie-attribute/
https://www.sjoerdlangkemper.nl/2016/04/14/preventing-csrf-with-samesite-cookie-attribute/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite#browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite#browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite#browser_compatibility
https://www.netsparker.com/blog/web-security/same-site-cookie-attribute-prevent-cross-site-request-forgery/
https://www.netsparker.com/blog/web-security/same-site-cookie-attribute-prevent-cross-site-request-forgery/
https://owasp.org/www-project-top-ten/
https://www.chromestatus.com/feature/5088147346030592
https://www.chromestatus.com/feature/5088147346030592
https://portswigger.net/web-security/csrf/samesite-cookies

[32] Iskander Sanchez-Rola, Davide Balzarotti, and Igor Santos. Cook-
ies from the past: Timing server-side request processing code for
history sniffing. Digital Threats: Research and Practic, 1(4), 2020.

[33] Jordan Simpson. Should Logging Out Be a GET or POST? https:
/Iwww.baeldung.com/logout-get-vs-post, 2021, Accessed July 19,
2021.

[34] Stetic. Browser statistics with version. https://www.stetic.com/
market-share/browser/, 2021, Accessed July 19, 2021.

[35] Ben Stock, Martin Johns, Marius Steffens, and Michael Backes.
How the web tangled itself: Uncovering the history of client-
side web (in)security. In 26th USENIX Security Symposium
(USENIX Security 17), pages 971-987, Vancouver, BC, August
2017. USENIX Association.

[36] Avinash Sudhodanan, Roberto Carbone, Luca Compagna, Nicolas
Dolgin, Alessandro Armando, and Umberto Morelli. Large-scale
analysis & detection of authentication cross-site request forgeries.
In 2017 IEEE European Symposium on Security and Privacy,
EuroS&P 2017, Paris, France, April 26-28, 2017, pages 350-365.
IEEE, 2017.

[37] Shuo Tang, Nathan Dautenhahn, and Samuel T. King. Fortifying
web-based applications automatically. In CCS, pages 615-626.
ACM, 2011.

[38] Peter Watkins. Mail about CSRF to the BugTraq mailing
list. https://web.archive.org/web/20020204142607/http://www.tux.
org/~peterw/csrf.txt, 2001. Accessed July 19, 2021, via The Inter-
net Archive.

[39] Mike West. Incrementally Better Cookies. Internet-
Draft draft-west-cookie-incrementalism-00, Internet Engineering
Task Force, 2016. https://datatracker.ietf.org/doc/html/draft-west-
cookie-incrementalism-00.

[40] Mike West. Incrementally better cookies draft-west-cookie-
incrementalism-01. Technical report, Internet Engineering
Task Force, 2020. https://datatracker.ietf.org/doc/html/draft-west-
cookie-incrementalism-01#section-3.2.

[41] Mike West and Goodwin Mark. Same-site cookies — draft IETF
6265. Internet-draft, Internet Engineering Task Force, 2016.
https://tools.ietf.org/pdf/draft-west-first-party-cookies-07.pdf.

Appendix
1. Browser: statistics and compatibility with SSC

In this section we report on few statistics about (i)
browser compatibility with SSC (see Figure 4 borrowed
from [24]) and (ii) market share of major browsers
among users (see Figure 5 borrowed from [34]). Both the
snapshots were captured on June 2020. By combining the
two and focusing on web browsers only, we can observe
that 51.6% of all users are employing browsers enforcing
LaxByDefault. This percentage is computed by observing
that only Chrome and Edge are currently enforcing the
LaxByDefault policy.

[=] 0
o -
5 - g
2 5] T z 3
2 g || 8 8|¢2
o g 5| s | 2|55 |68
£ 5 z © - < g % 5 5 5
5 o £ E 3 5 2 S ° g & 2
£ 2 15 2 g © < i 12 g k] 1
53 i i £ o @ = S i o a a
® @ o0 | €& | 0 | 0o & |O®® | 00 | 0 o e
samesite 51 16 | 60 | No | 39 |13% | 51 51 60 | 41 13| 50
v v
samesite=Lax 51 16 | 60 | No | 39 | 12 | 51 51 60 | 41 | 122 | 50
Defaults to Lax 80 | 8 |69 | No | 71 | No | 8 | 8 |79 | 60 | No | No
v v
Samesite=None 51 16 60 No 39 | 18% 51 51 60 41 13 5. &}
v
samesite=strict 51 1 | 60 | No | 39 | 12 | 51 51 60 [41 | 122 | 50
URL scheme-aware
8o |86 |79 | No |72 | No | No | 89 |79% | No | No | No
("schemefur’)
v v v v v v
Secure contextrequired | 80 | 86 |69® | No | 71 | No | 8 | 8 |79 | 60 | No | No
v v
D Full support D Partial support
D No support % See implementation notes.
Figure 4. Browser compatibility [24]
Rank Browser
1 @ Google Chrome 45.81%
2 @ safar 38.47%

3 @ Firefox
4 Edge

5 @ Mozila

11

933%

488%

152%

Figure 5. Browser statistics [34]

https://www.baeldung.com/logout-get-vs-post
https://www.baeldung.com/logout-get-vs-post
https://www.stetic.com/market-share/browser/
https://www.stetic.com/market-share/browser/
https://web.archive.org/web/20020204142607/http://www.tux.org/~peterw/csrf.txt
https://web.archive.org/web/20020204142607/http://www.tux.org/~peterw/csrf.txt

	Introduction
	Background
	Cross-site request forgery
	Pre-authentication vs post-authentication CSRF
	Client-side CSRF

	Same-Site Cookies (SSC)
	Default treatment for cookies lacking the SameSite attribute
	Timeline of adoption by Chrome

	Adoption of SameSite as defence
	Data collection & categorisation
	Acquisition of pre-login data
	Acquisition of post-login data
	Selecting security-sensitive cookies
	Categorisation of sites
	blackLimitations

	Adoption on pre-authentication cookies
	The transition period
	Session cookies first-party cookies
	Overall adoption over time
	Implementation issues with respect to SameSite=none

	Adoption on authentication cookies

	Impact on CSRF
	Potential of SSC defence
	Pre-authentication (D-II)
	Post-authentication (D-I and D-II)

	Websites disabling SSC: risk of CSRF

	Guidelines
	Web browsers
	Web developers
	Testers

	Related work
	CSRF related studies
	Large-scale measurements on security relevant attributes

	Conclusions
	References
	Appendix
	Browser: statistics and compatibility with SSC

